
I US Army Corps
of Engineers

I °

II
I

IMULATED ENGINEER ASSESSMENT OF THE

I iCOMMUNICATIONS ZONE MODEL (SEA C)

(Documentation and Users Manual)I
USAESC-R-88-3

I- -DTI
I!1 ELECT

ENGNE AUG0 31

ISTUDIES CD
1 CENTER

The views, opinions, and/or findings contained in this I
report are those of the author(s) and should not be

construed as an official US Department of the Army
position, policy, or decision unless so designated by

other official documentation. "%

l I ~~~~OMIBTT-ON r..:P I

,A pp li ved to? pub lic Teie,-3,ti

r 1 -,4

S.S.~%* .., 41 . - %

W: SIMULATED ENGINEER ASNSESSMENT OF THE %J

~COMMUNICATIONS ZONE MODEL (SEA C)',.

- --

(Documentation an~d Users Manual)

USAESC-R-88-3 Z

DTIC

5,5,

Prepared by SESMNTOFTCTHE "
Engineer Studies Center U 0 (E1C 8

US Army Corps of Engineers)

June 1988 S D

£. '

DISTMIMTON STATEMEN' A 5

Aprcved for public xeleasom

-S

D-tihto Unt5 i **I -V~~

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMBNo 0704-0188
Exp Date Jun30, 1986

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for public release; distribution is
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
USAESC-R-88-3

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
US Army Engineer Studies (If applicable)

Centr I EESCHQ ROK/US Combined Forces CommandCenter CEESC ________________________

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Casey Building 2594 APO San Francisco 96301
Fort Belvoir, VA 22060-5583

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

US Army Corps of Engineers USACE N/A
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

20 Massachusetts Avenue, NW PROGRAM PROJECT TASK WORK UNIT
Washington, DC 20314-1000 ELEMENT NO. NO NO ACCESSION NO

0 0 0 0
11. TITLE (Include Security Classification)
SIMULATED ENGINEER ASSESSMENT OF THE COMMUNICATIONS ZONE MODEL (SEAC)
(Documentation and Users Manual) (U)

12. PERSONAL AUTHOR(S)

Halayko, Robert
13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Final FROM 1987 TO 1983 8806 312 A

16. SUPPLEMENTARY NOTATION

AD Agency Accession No. DA305198

17. h COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Model; Simulation

19tABSTRACT (Continue on reverse if necessary and identify by block number)
SEAC is a computer model used to conduct a large class of engineering analyses for COMMZ
operations. SEAC employs a unique representation of the COMZ to reflect the geography of
the theater, and organizational support planning. Engineer requirements associated with

facility and installation construction, repair, and maintenance are calculated based on the
time-phased arrival of units, their movement and locations in the COMMZ, and the results of
enemy units, their movement and locations in the COMMZ, and the results of enemy attacks as
determined by an internal threat/damage sub-model. Engineer capability is bascd on the vari-
ous skills found in engineer units used in the COMMZ, and distinguished by service and
national affiliations. SEAC is a computer model based on object-oriented programming design
techniques, and uses the process view of simulation to achieve its purpose. As a direct con-
sequence of its hierarchical design, SEAC is highly modular and can be easily extended to
examine related engineer problems in the COMIZ. This manual documents SEAC's code, dat"07 structure, and design. It also includes sections describing: various model output, L.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASS;ICATION
*] UNCLASSIFIED/UNLIMITED E3 SAME AS RPT E- DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE iNDIVIDUAL DALE F. MEANS, COL 220 , LEPHONE (Include Area Code) 22c O1FICE SYIBOL
US Army Corns of Engineers. Commander/Dirnctonr (202) 355-2373/74 CEESC-XO

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted 3EC,_Q)TY CLASSOtICATION OF Ti,5 PAGE
All other editions are obsolete UNCLASSIFIED

,

> UNCLASSIFIED

Item 19, Abstract (Continued)

considerations that should be used when assembling the various data bases, and the more
prominent features of the software environment in which SEAC was developed.

@ "~

I iC TAB [

I[)Y .

D~t~lh. i', i.-

i C .. ; 0' ,

V.

By

U'

UNCLASSIFIED

K

DISTRIBUTION LIST

No. of

Copies

Commandant, US Army Engineer School, ATTN: ATSE-Z, Ft Leonard Wood,
MO 65473-5000 1

Commandant, US Army Engineer School, ATTN: ATSE-DCD, Ft Leonard Wood,
MO 65473-5000 2

Commander, 412th Engineer Command, P.O. Box 55, Vicksburg, MS
39180 2

Commander, 416th Engineer Command, 4454 West Cermak Road, Chicago,
IL 60623 2

Commander-in-Chief, US Army Central Command, ATTN: CC J4/7-E
MacDill AFB, Tampa, FL 33608-7001 1

Commander, Naval Facilities Engineering Command, 200 Stovall Street, •
Alexandria, VA 22332-2300 1

Commander, US Army Combined Arms Center, Ft Leavenworth, KS
66027-5000 1

Commander, US Army Engineer Division, Europe, APO NY 09757 1 S

Commander, US Army Corps of Engineers, Pacific Ocean Division,

ATTN: PODEM, Ft Shafter, HI 96858 1

Commander, USAREUR, ATTN: DCSENGR, APO New York 09403 1
0

Commander, US Army Logistics Center, Ft Lee, VA 23801-6000 1

Commander, US Army Southern Command, ATTN: SCEN, APO Miami 34003 1 P

Commander, US Army TRADOC Analysis Center, ATTN: ATOR-CAS,

Ft Leavenworth, KS 66027-5200 2

Commander, US Army Training and Doctrine Command, ATTN: ATEN,
Ft Monroe, VA 23651 1

Commander, US Army Western Command, ATTN: APEN, Ft Shafter, HI
96858-5100 1

Commander, US Forces in Korea, Assistant Chief of Staff, Engineer, p

APO San Francisco 96301-0022 4

~iii

of-

No. of
Copies N

p

Commander, US Forces in Korea/EUSA, APO San Francisco 96301 1

Commander, US Pacific Air Forces, Operational Analysis Office, ,

Hickam AFB, HI 96853 1

Defense Logistics Agency, Defense Technical Information Center ATTN:
DB-2D, Cameron Station, Alexandria, VA 22304-6145 2

Deputy Under Secretary of the Army for Operations and Research,
Room 2E660, The Pentagon, Washington, DC 20301 1

Director, Joint Data System Support Center, The Pentagon, BF675,
Washington, DC 20301-7010 2

Director, Office of the Secretary of Defense, Director, Program
Analysis and Evaluation, General Purpose Programs, Land Forces, Y
Rm 2B256, Pentagon, Washington, DC 20301 1

Director, Organization of the Joint Chiefs of Staff, J4 (Logistics),
Deputy Director for Plans, Concepts, and Analysis, Washington, ,*

DC 20301 1

Director, Organization of the Joint Chiefs of Staff, J4 (Logistics),
Washington, DC 20301 1

Director of Research and Development, US Army Corps of Engineers, .
Washington, DC 20314-1000 1

Director, US Army Concepts Analysis Agency, 8120 Woodmont Avenue,

Bethesda, MD 20814-2797 2

Director, US Army TRADOC Analysis Center, White Sands Missile Range,
White Sands Missile Range, NM 88002-5502 2

Headquarters, Department of the Army, Office of the Assistant Chief

of Engineers, ATTN: DAEN-ZCM, Washington, DC 20310-2600 1

Headquarters, US Air Force, Assistant Chief of Staff, Studies and
Analyses, Rm 1E388, The Pentagon, Washington, DC 20330-5420 1 -

Pentagon Library, Rm 1A518, The Pentagon, ATTN: Army Studies, V "A
Washington, DC 20310-6050 1

Readiness Directorate, Air Force Engineering and Services Center,
ATTN: AFESC/DEO, Tyndall AFB, FL 32403 1

iv

46.41

No. of
Copies

US Army Cold Regions Research and Engineering Laboratory, 72 Lyme

Road, Hanover, NH 03755-1290 1

US Army ConstrucLlon Engineering Research Laboratory, P.O. Box 4005,
Champaign, IL 61820-1305 1

US Army Engineer Waterways Experiment Station, P.O. Box 631, Vicksburg,

MS 39180-0631 1

US Army Engineer Studies Center, Casey Building 2594, Ft Belvoir, VA
22060-5583 13

Director, US Army Engineering and Housing Support Center, Bldg 358,
Ft Belvoir, VA 22060-5516 1

TOTAL 57

t-v

:M. " ~~I--
*1~,~*1

A ..

ACKNOWLEDGMENTS

This manual was prepared to document the computer model developed as part
of a sustainment engineering study conducted by the US Army Engineer Studies
Center for the Republic of Korea/United States (ROK/US) Combined Forces

% Command (CFC). Mr. Robert Halayko conceived and implemented the model while
serving as Project Manager for Engineer Assessment Korea: Communications Zone
Analysis, working under the supervision of Mr. Lyle Suprise, Senior Project
Director, and Mr. Dean Considine, Technical Director.

Acknowledgments are extended to those agencies and offices without whose
invaluable information and assistance this model could not have been
attempted. In particular, ESC wishes to thank: Headquarters, CFC,
particularly the Assistant Chief of Staff, Engineer; Pacific Air Force,
Operations Analysis; Joint Data Systems Support Center; US Army Facilities
Engineer Support Center; and the 416th Engineer Command (Reserves).

This manual was prepared for publication by Mrs. Donna L. Norbutt,
Ms. Stacia L. Hall, and Mrs. Collie J. Johnson. The editor was Ms. Cherie A.
O'Neil. The graphics were prepared by Mr. John E. Hobbs and Ms. Linda G. I
Smith, under the supervision of Mr. Christopher Y. K. Lew.

'%

~vii

0ONN
IJ

VMP6VWA._ -JRTUV ' V. VU1L.. A IL X.

CONTENTS

Section Page

DD FORM 1473
DISTRIBUTION iii
ACKNOWLEDGMENTS vii
CONTENTS ix
EXECUTIVE SUMMARY xi
LIST OF ABBREVIATIONS AND ACRONYMS xiii

I INTRODUCIION
Purpose 1
Scope 1
Document Organization 1
Background 2

II SYSTEM REQUIREMENTS
Hardware/Software Environment 4
Data 4

III MODEL DESIGN
Model Overview 6
Major Structural Components 6
Major Processes 16

IV SYSTEM OPERATION
SEAC Execution 28
Output 29

V MODEL FUTURE

Use of SEAC (a Digression) 31
Future 31

VI POSTSCRIPT

Object-oriented Programming 33

Figure

1 Model Design Goals 3
2 SEAC Input/Output Structure 5
3 SEAC Methodology 7

e 4 Facility Classes and Subclasses 9
5 Installation Classes (Subclasses) 11
6 Region/Mapcell Example 12

7 Priority Groups 14
8 Air Threat Logic 18
9 SEAC Ranger/Commando Logic 20

10 Unit Directed Facility Requirements 21
11 Determining Facility Requirement 23

ix

-, - M. - . _

Figure Pag~e

12 Determining Damage Workload 25
13 Work Accomplishment 27
14 Execution Flow in SEAC 30

ANNEX A: SIMULA A-1
ANNEX B: DETAILED SYSTEM DESCRIPTIONS B-1
ANNEX C: DESCRIPTION OF SEAC'S DATA FILES C-1
ANNEX D: USERS GUIDE TO SEAC D-1
ANNEX E: SEAC REPORTS AND MESSAGES E-1 K

i-

-.I

5%

5::

.. :.

EXECUTIVE SUMMARY
1

The Engineer Studies Center (ESC) has, since the late seventies, been
analyzing existing OPLANs as part of an in-depth assessment of wartime
engineering workload and the adequacy of engineer planning. Most of these
studies concentrated on the forward combat zone (FCZ), and over time a well
defined methodology evolved. Recent study sponsors, however, asked that ESC
also look at engineer requirements in the communications zone (COMMZ). Since
COMMZ engineer operations are far different from FCZ tasks, ESC needed a new
analytic approach that realistically represented rear area engineer work, yet
still was compatible with the FCZ analyses (to enable theater-wide assessments
of engineer forces). The result is the Simulated Engineer Assessment for :he
COMMZ (SEAC), a powerful tool to conduct a large class of engineering analyses V_
for COMMZ operations. SEAC employs a unique representation of the COMMZ to
reflect the geography of the theater, and organizational support planning.
Engineer requirements, associated with facility and installation construction,
repair, and maintenance, are calculated based on the time-phased arrival of
units, their movement and locations in the COMMZ, and the results of enemy
attacks as determined by an internal threat/damage sub-model. Engineer e
capability is based on the various skills found in engineer units used in the J
COMMZ, and distinguished by service and national affiliations. SEAC is a
computer model based on object-oriented programming design techniques, and
uses the process view of simulation to achieve its purpose. As a direct
consequence of its hierarchical design, SEAC is highly modular and can be
easily extended to examine related engineer problems in the COMMZ.

This manual documents SEAC's code, data structure, and design. It also
includes sections describing: various model output, considerations that
should be used when assembling the various data bases, and the more prominent
features of the software environment in which SEAC was developed.

.4,.,

1

A I
IN

xi

LIST OF ABBREVIATIONS AND ACRONYMS

ADA air defense artillery
AFCS Army Facilities Component System
ALGOL algorithm

.. APOD aerial port of debarkation
ARLOC Army location

CATCODE category code
CESP Civil Engineering Support Plan
CESPG............Civil Engineering Support Plan Generator
COMMZ communications zone

EAK Engineer Assessment, Korea
ECAPB Engineer Unit Capability File
EHSC Engineering and Housing Support Center

ESC US Army Engineer Studies Center

FCZ forward combat zone

FEBA forward edge of the battle area

GEOLOC geolocation codes

HN host nation
HQDA Headquarters, Department of the Army .

IFS Integrated Facility System t

JCS Joint Chiefs of Staff

LOC lines of communication

MAINT maintenance
MEAB mean ar-a of effectiveness for blast damage
MSG models, systems, and games '

MSR main supply route

ZI NB note bene (latin for "note well")

OOP object-oriented programming
OPLAN operation plan

xiiir

p.

PACAF/OA Pacific Air Force, Operations Analysis
PLNGFACT planning factorPOD port of debarkationPOL petroleum, oil, and lubricants

RAD Roentgen Absorbed Dose

"

RESTR
restoration

.

ROK Republic of Korea

.

RPI real property inventory
RS&D reception, staging, and deployment

SEAC Simulated Engineer Assessment of the Communications Zone "
ModelSPOD sea port of debarkation

TDA table of distribution and allowancesTMTechnical Manual.

v

TOE table of organization and equipment

/

TPFDD Time-Phased Force Deployment Data
TPFDL Time-Phased Force Deployment List
UTC unit type code

V

.

xiv

oa
. 3

. | '

'-'°

SIMULATED ENGINEER ASSESSMENT OF THE
COMMUNICATIONS ZONE MODEL (SEAC) Vt

(Documentation and Users Manual)

I. INTRODUCTION

1. Purpose. This publication documents the computer system developed

by the Engineer Studies Center (ESC) to determine engineer requirements and

capabilities in the communications zone (COMMZ) during contingency operations.

2. Scope. The SEAC model is a simulation of engineer activities in the

COMMZ. Its purpose is to evaluate the adequacy of engineer support of an

operational plan (OPLAN). SEAC highly details engineer requirements and capa-

bilities, which is also compatible with the engineer assessment methodology

ESC has developed for its analysis of Forward Combat Zone (FCZ) engineer

planningI . SEAC uses state of the art computer programming techniques which

greatly contribute to its design and successful implementation. The structure

is based on a powerful modeling paradigm (object-oriented programming [OOPJ),

that has proven to be an elegant and productive means in which to construct

models of complex systems. This document performs three major functions:

model description -- to define the system; software documentation -- to list

and describe the data and functions of the programs; and user's manual -- to

assist users in exercising the model. The main paper introduces the model and

describes its general capabilities, while the annexes contain the more

detailed software, data base, and design specifications.

3. Document Organization. The document is organized as follows:

* Main paper - contains a general description of the model and its

major components. It also discusses the general requirements of 'S"

included or designed.

Annex A - introduces several important features of SIMULA, the

computer language used to implement SEAC.

1US Army Engineer Assessment, Europe (United States Army Engineer Studies

Center [USAESC], June 1981); Analysis of VII Corps Combat Engineer Wartime
Requirements (USAESC, March 1983); Analysis of V Corps Combat Engineer Wartime
Requirements (USAESC, December 1983); Analysis of III Corps Combat Engineer 'i

Wartime Requirements (USAESC, December 1984). '-

* Annex B - contains listings, data definitions, and descriptions

of SEAC's software components.

* Annex C - defines the various data files used by SEAC.

* Annex D - contains guidance and instruction to prepare input and

scenario data for a SEAC application.

* Annex E - provides listings and explanations of the many reports,

messages, and warnings that have been built into the model to
facilitate application development, execution, and interpreta- .

tiun of results.

4. Background. ESC has, since the late 1970's, been analyzing the

adequacy of engineer support of various military operational plans (OPLANs).

Initially, most of these studies concentrated on the FCZ and were confined to

European studies. When ESC began doing such assessments outside of Europe,

sponsors requested that sustainment engineering workloads also be included in ,\

the analysis. The decision to create SEAC was based on the exigencies of one

of these studies and a perceived need for an in-house computerized system to

analyze the engineer planning in the COMMZ. SEAC was begun to assist in %

assessing COMMZ engineer support in Korea. 2 Actually when the study began,

ESC had no plan to use, much less construct, a model of rear area engineering.

his changed once ESC saw the kinds and volume of data that it would have to

acquire and manipulate. Consequently, the need for automated assistance

became apparent. ESC originally planned to confect a dedicated model, i.e.,

one specifically designed to address Korea. However, it reconsidered the

scope and application of the model as development proceeded, and as a direct

consequence of the evolving design of the model. ESC decided that it could

generalize the model to address a large class of COMMZ engineer problems. The

objective was to have a flexible, in-house model that could be easily used or

adapted. ESC often takes on studies that do not exactly fit other engineering

models. In order to use SEAC on these prospective but likely analyses, ESC

established the following revised design goals portrayed in Figure 1. Two

different objectives were prescribed: one for the system to be simulated; and

the other for the form of the implementation. The functional representation

was to accurately simulate engineer operations and, among other things,

2Engineer Assessment, Korea: Communications Zone Analysis (USAESC, August
1987). Hereafter referred to as EAK.

2

I

MODEL DESIGN GOALS

1. Functional 0

- Permit flexible assignments of engineer assets.
-Retain detailed information about installations and facility

assets and requirements.
- Use available data as much as possible.

2. Systemic

- Use a time-dependent, process-oriented modeling approach.
-Employ good software engineering methods to facilitate the

modification and extension of the prototype.
- Separate code from data. 0

Figure 1

provide detailed reports on engineer requirements and capabilities at various

levels of aggregation. ESC recognized, however, that changes to the model

would arise with new study problems. The system, therefore, employs software

engineering techniques to facilitate program development and modification.

Because of its intended mutability, SEAC is sometimes referred to in this

document as a prototype. This underscores its potential for adaptability. 0

SEAC looks beyond the study for which it was developed, at special problems,

which very likely could require extending or modifying the present model.

0

-

%

3

% d"L.

II. SYSTEM REQUIREMENTS
h

5. Hardware/Software Environment. SEAC was implemented on ESC's PRIME-

750 minicomputer, which has 3 megabytes of main memory and over 300 megabytes

of auxiliary disk storage. The model is programmed entirely in SIMULA, an V.

ALGOL-based computer language.3 SIMULA is a general purpose, object-oriented

programming (OOP) language, providing software features, such as inheritance,

encapsulation, and strong typing. Discrete-event simulation models usually

espouse one of three approaches to represent dynamic actions: event schedul-

ing, activity scanning, or process interaction.4 SIMULA provides a simulation

environment that supports the process view of model development and was, "t

therefore, the approach adopted in SEAC. A SIMULA process can also contain

all the relevant attributes and actions of the element, and thus provides an

object-oriented environment (cf. SIMSCRIPT 11.5). 5 Choosing SIMULA was

significant, because its power and features greatly facilitated development of
I

SEAC. (See Annex A for an overview of SIMULA.) Implementing SIMULA requires

revl8, or higher, of PRIMOS, which is PRlME's virtual memory operating system.

6. Data. As with any model, results are only as good as the input.

SEAC uses many data files during a typical execution. Annex C describes the

content, the source, and format of these data. Figure 2 shows the input/

output structure of the model. From it one can see the number and variety of

data that comprise the input portion of the system. Assembling the data prior

to conducting actual analyses can vary. The amount of time is dependent, to a

great degree, on outside organizations. In particular, the responsiveness of %

the sponsor in providing accurate threat, asset, and unit deployment data will

determine how quickly the data can be orchestrated. One data source in

particular is the Joint Chiefs of Staff (JCS), which has responsibility for

3Lamprecht, Gunther, Introduction to Simula 67 (Friedr. Vieweg & Sohn,
1983, Braunschweig/Wiesbaden, 1983).

4 Kreutzer, Wolfgang, System Simulation Programming Styles and Languages

(Addison-Wesley Publishing Co., 1986) p. 41.
5Russell, E. C., Simulating with Processes and Resources in SIMSCRIPT 11.5 *

(CACI Inc., 1979). Z

%

lot

SEAC INPUT I OUTPUT STRUCTURE~~Engineer /

Capailty ro Analyst AnalystCapability Troop* Input Input

dUnit r Air R/C
ThMaster* Tht O T -

Maps & Installation
nput egion 40.Status

GEOFILE Installation SEAC
Definitions I - unit Status

low 'RPI(s>) I '-
HNASSET* Installation

ASSET*

Inputaio I] Threat Attacks

Errors Input Engr. Status

Task SUTtUT Dy p t Capablity
NPuTireTntT by Regin Country (Region)INPU~~~Re OUPTRqrrmn, Summary Reports

Utilization Results &Repor uinr eot

' _CESPG Files [0] /Optional

Figure 2

the Civil Engineering Support Plan Generator (CESPG) files that currently

, provide a major portion of SEAC's input.
6

4 6Joint Operation Planning System (JOPS) Civil Engineering Support Plan
Generator (CESPG) Users Manual, Computer System Manual [CSM UM 122-86] (Joint
Data Systems Support Center, 1 April 1986). %

5

III. MODEL DESIGN

7. Model Overview. SEAC determines COMMZ engineer workload and

assesses how well engineer capability can meet the demands. Work is

quantified by the size of the task, the manhours necessary to accomplish it,

the facility class, type, and importance of the work being performed. Figure

3 portrays the major components of the model. Note in particular the central

location of the facility block which is at the heart of SEAC. Most facility

requirements are generated by units assigned to, arriving in, or passing

through the theater. Planning factors determine which and how much facilities N

are needed.7 Factors are associated with supported population, equipment,

particular units, and installations. Before new facilities are built,

existing facility assets are checked to see if they satisfy requirements. If

inadequate, construction may be scheduled, depending upon theater policies

defined for the analysis. War damage repair tasks arise from either enemy

ground or air attacks generated by SEAC's threat submodels. (Maintenance and

restoration tasks, while not in the initial version of SEAC, would not be

difficult to include once valid workload factors are developed.) The other

side of SEAC deals with the capability of engineer units in the COMMZ to

perform the work. Because SEAC identifies individual engineer units, this

allows engineers to control their estimating capability to construct and

repair facilities. Models and simulations can frequently be viewed as classes

of data elements and the procedures that change these data from one state to

another. The following sections first describe the major structural data

elements within SEAC, followed by descriptions of the primary processes that

manipulate the elements. Definitive descriptions of these, as well as the

remaining system elements appear in Annex B.

8. Major Structural Components. SEAC is an example of object-oriented

programming (OOP). The data components described below actually represent
classes of model objects which, in turn, are examples of abstract data types. 8

Objects are more than simply a particular piece of data somewhere in the host

computer's memory (as someone familiar with FORTRAN, BASIC, or PASCAL might

7 "Planning Factors for Military Construction in Contingency Operations

(U)," Enclosure to JCS Memorandum MJCS 201-81 (13 October 1981). ,8 Liskov, Barbara, et. al., "Abstraction Mechanisms in CLU," Communica-
tions of the ACM, Volume 20 (August 1977), pp. 564-576.

6

A0

perceive it). They are instances of specially defined data and operational

templates that define the model using elements that approximate the real world

system being simulated. Because of the ability to map real world elements to

model objects, OOP's abstraction and design processes produce software that

more closely resembles the target system. The following descriptions refer to

terms of units, tasks, etc., that are analogous to their real world namesakes.

To better understand the richness and power of object representations, the

reader should examine the class definitions found in Annex B for the%

components below.

'N

Troo SEAC METHODOLOGY

Unit Disposition:

*Beddowr,

i i Fact~rs 7 (/ P r e - Ex i s t i ng 7Rqiemns T hreat (' .

Determine Units Facilities: hreat Aircraft

Reureet Equipment. - Most Nation Munition %."

-%

E cine Uit Faclit amajet.

IntlltonAeFacilities by.:a
Faiit eqt sAse t s m •Installation Daag

Requirements S

• .SR

BultRie Yes

•S

Code Data:I '. •Facility 1

~Orders: P # epaii. .".

Projects I Construct FacilityEnginer Units > Facility Projec

Capability Pool Work I''

.hlCapability y ,,j%
STableBul/ie Ys0

Figure 3

7

- X1.rVR-%7 -7 7V 15-777 6 X ' .7. .,.

a. Defining the COMNZ. The stage on which SEAC acts is the

communications zone of a contingency theater. The initial challenge in
I

developing SEAC was to design a COMMZ representation that would support the

overall engineer assessment process. ESC had previously developed a

formulistic approach to analyzing combat engineer requirements in the FCZ.

SEAC was compatible with that FCZ approach, while focusing on the sustainment

engineering tasks that occur in the COMMZ. This was required despite the fact t

that the nature of engineer tasks in the forward and rear areas is quite

different. SEAC had to be flexible enough to adapt to future studies in .

different theaters with possibly different analysis objectives. Moreover, the \

design had to balance the things necessary to evaluate engineer planning with

limited data and practical limitations on how big the model could be.

(1) Facilities. Facilities play a central role in SEAC.

Facility workload characteristics and data come directly from the several

services' facility component systems9 . In addition to identifying facility

types, these data provide the daily work hours, by skill, that are needed to

build or repair the facility; the minimum number of days to accomplish the

task; and the unit of measure by which the facility is sized (e.g., 1,000

square feet or 60 kilowatts per hour). These data are available not only for 0

constructing normal facilities, bit also for emergency construction and for

damage repair of existing facilities. Presently SEAC does not address resto-

ration work, although such data is available. Comparable wartime maintenance

data do not appear to be readily available. The versatility of SEAC's design,

however, would allow ESC to assimilate restoration or maintenance data and

procedures if needed, or when available. Facilities are identified by JCS \

category codes (CATCODES). Within SEAC, similar facilities are grouped into "

general classes for buildings, surfaces, transportation networks, utilities,

petroleum, oil, and lubricants (POL). Surface facilities, for example, ..

include runways, hardstands, taxiways, parking areas, etc. Figure 4 gives the

mapping of category codes into SEAC classes and subclasses. This hierarchy of

facilities enables SEAC to associate different operations with particular

facilities. The primary reasons for this structure are war damage estimation ,

9Army Facility Component System - Design Manual for Architect-Engineers . ,
Guidance, HNDM-1110-1-1 (US Army Corps of Engineers, Huntsville Division,
September 1980).

8

Jr
S.n.Ir

FACILITY CLASSES AND SUBCLASSES

Class Subclass JCS CATCODES

Surface Runway i1
Pavement 112, 113, 116, 153
Hardstand 852

Petroleum Pipeline 125

Tanks 411, 124
POL facilities 121, 122, 123, 126

Building Communications 131, 133
Operations 149

Shops 211, 213-219
Storage 421, 425, 431, 432, 441, 442

Medical 510, 540, 550, 560
Administrative 610
Quarters 721, 722, 724, 725, 730

Revetments 149
Piers 151, 152, 159, 163

Utility Water 841, 842
Waste 831, 832

Power 811, 812

Transportation Roads 851
Railroads 860

Figure 4

and repair task estimation. Facilities have different criteria for damage;

some need only be within a weapon's blast radius, while others will be damaged

if within the fragmentation area.10 To begin with, SEAC can address these

differences because it contains a detailed threat submodel that simulates

individual enemy attacks against facilities (see 9.a.). The effect of

dropping a general purpose bomb is not pre-determined; it will depend upon the

class, size, and vulnerability of the facility and the characteristics and

impact location of the bomb. Even how damage is characterized can be

different: runway damage is measured in craters, a building is by square

lOCommunist-World Weapons Effectiveness, Selection, and Requirements

Handbook (U), DDB-2660-21-80, Change No. 1 (Defense Intelligence Agency [DIA],
February 1980).

9

feet, but a pipeline may be in linear feet. Repair procedures can also be

characterized differently.

(2) Installations. An installation is "...a group of facil- S

ities in the same vicinity that supports particular functions...".
I 1

Installations are another SEAC COMMZ building block. Other than lines of

communication (LOC) facilities (i.e., roads, railroads, and pipelines), all

facilities are located at the installations. Units are also located at

installations. We shall discuss unit reception, staging, and deployment in

more depth in a later section. It is important, however, to note that the

only unit positional information available to SEAC are the port of debarkation

(POD) and destination geolocation codes (GEOLOC) derived from the time-phased

force deployment data (TPFDD). COMMZ units are those that are either forward

deployed, or are assigned to installations in the COMMZ. SEAC distinguishes

between COMMZ units and FCZ-bound units, although both types may at any time

be located at an installation. To do this, SEAC has categorized installations

based on their functions. An installation designated as a staging base *.,

distinguishes between those units that are assumed to become permanent party,

and those units that will deploy to the front. Installation classes are .

defined as well for air bases, ports, etc. (see Figure 5). These classes

enable SEAC to tailor operations at a particular site to better emulate what

would actually be happening. SEAC defines requirements in terms of the"' "

facilities that the units, their personnel, and their equipment need according

to applicable planning factors (see 8.b.). Facility requirements can also be

ascribed to an installation class. For example, no air force unit has a

factor that requires a runway; a runway is presumed to exist along with .

certain other facilities that comprise a baseline air base. Sometimes, ' .

however, the facility asset file may be incomplete, and there is no runway -

defined. Also, the COMMZ or theater can expand creating a requirement to

construct an installation from scratch. Installation planning factors can be

used in these situations to establish or verify minimum facility requirements.

Those requirements can then be translated into construction jobs necessary to

satisfy needs. Lastly, installations contain lists of engineer tasks, and

11 AFCS Design Manual (US Army Huntsville Engineer Division, HNDM-I10-

1-4, 1 September 1980), p. 1-3. 5

10

, I

INSTALLATION CLASSES (SUBCLASSES)

Air Bases (APODs, collocated)

Ports (SPODs)

ADA sites

Camps (RS&D centers)

Electronic sites

Depots

Other

Figure 5

engineer units available to work on those tasks (see the discussion of Orders

and Work).

(3) Region/mapcell. A major innovation in SEAC was the design

of an abstract, hierarchical representation of the theater. This design

provides an extremely compact, and accessible framework for the COMMZ, which

captures those features necessary to represent engineer operations for any

theater configuration. It does so using two different elements -- regions and

mapcells. Mapcells define a unique partition of the theater. One could over-

lay the theater with a square grid, and each grid cell could then be defined

as a mapcell. Mapcells, however, needn't be regularly shaped, nor even the

!same size. Their primary purpose is to fix the location of installations and

main supply routes (MSRs). A mapcell can contain lists of installations, MSR

facilities, and MSR tasks (installations contain all other tasks). Comple-

menting mapcells in SEAC's theater representation is the region, a special

SEAC object that groups mapcells or other regions (in which case they are I

called subregions). Regions enable SEAC to emulate the general area support

role of engineer troops, particularly engineer combat heavy battalions. A

region can contain subregions, mapcells, and engineer units. Such units are

available for any work that arises in any of the mapcells that belong to the

region or, derivatively, in any of its subregions. A simple region/mapcell

theater definition is portrayed in Figure 6. It is a multi-level structure.

%I The bottom level is the plane that contains the mapcell definition of the

ll I

11 'S.

I

COMMZ HIERARCHY IN SEAC,.."i

ELEMENTS LEVELS ::

REGION"-
(COUNTRY A) RGO .

SR 2 I"

V.1

~~MAPCELL ,

&

~INSTALLATIONS

AIRB ASE CAM

I' FACILITIES
RUNWAY RAILWAY BLDGS

..

Figure 6 "

12 .,

-

COMMZHIERACHY I SEA
,9 r. ,. , ,.,,,, . , , , ,. ,. , .,ELEM ENT..,. .-,..- S..-.- LEVELS,:- ,k "X -. -'." '. 2 % % ', ; .".K. ,

theater, and the upper levels or planes are the region and subregion I
definitions.

1 2

b. Planning factors. SEAC evaluates engineer planning. The first

step in this process determines the facilities needed by friendly forces and

whether existing facility assets satisfy those needs. (We exclude damage, I
since that essentially modifies assets.) Planning factors determine what

various elements need or use. An air force squadron, for example, requires a

certain amount of parking space for each plane; housing and troop support

facilities for its personnel; POL storage for fuel; etc. What types of

facilities and in what quantities are dictated by planning factors. In our

example, there could be several factors at work: one that translates uni- -
populations into troop support needs; one that indicates how many, and which

types of planes the unit has; and one (assuming there is one type of plane)

that indicates what each plane will require. Some factors may be institu- I
tionalized, such as the amount of parking space for an F-4, or they may be •

plan- or theater-dependent, such as the amount of water consumed per person.

Factors prescribing facility requirements can be defined for units, people, U
equipment, and installations. Factors can also be universal, or can be

differentiated by country and by service. (See discussion of Factor file in

Annex C, Data Files.)

c. Priority/policy. Part of the impetus to develop SEAC was the I
need to design a COMMZ model that was compatible with the risk assessment

%

methodology ESC had developed for the analysis of FCZ engineer planning.

Assigning priorities to each and every engineer task is at the heart of this

process. Every construction and repair task in SEAC has a priority associated a
with it. The process employs four priorities: vital, critical, essential,
and necessary (see Figure 7 for associated characteristics. A priority 1

Prelates the importance of the task to the overall success of the OPLAN. A

1 2The regional hierarchy is analogous to the political boundaries of any I
country. Suppose we defined mapcells as every county in the lower forty-eight. 0
We could then define a regionalization as follows: at the top would be the US;
it contains subregions of New England, Middle Atlantic, Midwest, Pacific

Northwest, etc.; and each of those contains subregions corresponding to the i
states that are traditionally

linked to the areas (subregion New England

contains subregions: Maine, New Hampshire, Vermont, etc.). And finally, each -."
state subregion would have a list of every county that is within its boundary.

13"-"

r4
1U
.-9

e

PRIORITY GROUPS

Short Title Implications of Nonsupport

Vital Jeopardizes the existence of friendly force

High loss of life

Early defeat

Critical Failure of friendly force operations

Increased probability of defeat 4

Essential Short-term degradation in sustainability

Significant equipment/materiel losses

Necessary Long-term degradation in sustainability

Moderate equipment/materiel losses 4'

Figure 7

vital task is one that must be done if the OPLAN is to succeed. A necessary

task is one that should ultimately be done, but whose impact, if not done, 4

does not threaten a successful campaign. The results of the assessment '

provide an estimate of engineer capability to support the OPLAN under study.

In the initial version of SEAC, new construction priorities were based on the

installation class at which the new facility was required. This was, however,

largely due to the particuiar needs of the study within which SEAC was '

developed. 1 3 Repair task priorities are associated directly with the class of

the facility that was damaged. In addition to designating the priority, the

country can also be designated for applications with multinational play.

Directly associated with priorities is the "policy." A policy defines,

1 3Broad assignment of priorities by installation class results in equat- .
ing construction of mess halls with operational facilities. This probably does
not reflect what would actually happen. The better solution is to assign
construction priorities based on facility class. The impact on the model is
negligible.

14

.- ~~~ C V. P %.
*V~ e-- W.-

either implicitly or explicitly, what and how much work will be generated for

a task. An implicit policy is enacted by simply not including a priority

entry for a country's specific construction or repair task. If, for example, 0

there were no entry for US railroad repair, SEAC would not create a task, even

if railroad damage occurred. The presumption is that either such damage would

be ignored or that someone else would do it. An explicit policy is denoted by

giving the percent of a task that a country is expected to accomplish.
14

d. Engineer units. SEAC allocates engineer assets for workload in

the COMMZ. The source of engineer resources is the various military and

civilian engineer units that are planned for the OPLAN. Engineer units are

individually identified by unit type code (UTC), and have attributes for

personnel strength, time in theater, country, and service. The UTC is used

not only as an ID but also as an entry to an engineer unit capability table,

which establishes the normal daily capability, defined by skill. Capability

can be modified in several ways. One is a general availability factor defined •

for each country that can be used to represent sickness and casualty losses.

The other is a phase-in factor that allows for a gradual (10-day) and

reasonable increase in unit productivity. In addition, if a unit's strength

is different from the reference strength of the capability table entry, then 6

the unit's nominal capability is proportionately modified. Units are normally

inserted into the theater after being read in from the Troop file. Engineer

units are, however, an exception because they are controlled by entries on the

Orders file. Orders enable a user to insert, move, and remove engineer units •

from the simulation. Units can be assigned to either installations or region/

subregions. A unit can work on any task within the conceptual boundary of its

location. If assigned to an installation, it can only work on tasks at that

installation no matter what the workload is at nearby installations.1 5 By

explicitly identifying each engineer unit, maximum flexibility and control are

14 This type of policy enables a user to directly use the host nation "1

support percentages as found in the Army Force Planning Data and Assumptions,
FY 1988-1997 (DA, August 1987).

15 This deals rather nicely with interservice support. By assigning Air
Force, Marine, or Navy engineer units to installations, we can assure that
their responsibilities will be focused. Army units, such as port construction
companies can also be assigned to a port to localize its utilization, while
combat heavy battalions (or host nation units?) can be assigned to a region
and, thus be able to support any requirements.

15

L H 1

maintained. General and direct support concepts can be emulated. Moreover, :

the door is left open for the possibility of expanding certain specialized

tasks requiring specific unit types and support. -

e. Tasks. SEAC requirements and capability come together in model

objects called tasks. SEAC combines construction or repair requirements with

information from the various functional component systems to create a work

task. Tasks are added to lists of tasks maintained at the installation or -

mapcell where the facility is or will be located and, consequently, where the

task arose. The task remains in the job queue until enough engineer capabil-

ity can be applied to complete it. Tasks have the following attributes: o%

average daily skill requirements to complete, minimum number of days to

complete, priority, and a reference to the facility (a separately maintained

SEAC object) that spawned the task. Because some tasks must either take

several days to complete or, because of insufficient capability, be accom-

plished over time, there is also an internal parameter that indicates the

progress that has been made on the task. When a task is completed, it is

removed from the list and destroyed, but not prior to making adjustments in

the effected facility (either removing a damaged flag, or indicating that .

construction was completed). -

9. Major Processes. While elements define what is manipulated in SEAC,

processes define how those elements are created and modified. The major

processes deal with determining facility requirements, carrying out attacks by

enemy forces against installations and facilities, and applying engineering

capability to the workload.

a. War damage. Determining facility requirements, although it ,

involves a considerable amount of supporting data, is rather straightforward

in operation. War damage repair, another responsibility of engineers, is not

as easy to calculate. Facility requirements proceed in lockstep with the

movement of units into and through the COMMZ. The Troop file (TPFDD) supplies

the dates and locations to track those movements. There is no such script

yielding a detailed list of facilities, locations, and times for war damage.

Unfortunately, we do not know the enemy's plan nor do we know how successful

it will be and how success or failure will influence subsequent attacks.

Because of this uncertainty, other engineering models distributed damage over

16

% %

time, and over installations. 1 6 It seems, however, that while the magnitude

of damage might turn out to be reasonable in the CESPG, the theory that the

enemy would attack all installations (and for only the first 30 days of the

war) seems rather tenuous. Because of the resolution and flexibility of SEAC,

ESC availed itself of intelligence estimates of enemy capability and

intentions to define when and where damage would arise. 1 7 In both the air and

ground threat processes described below, enemy attacks are predesignated by

time, size, composition of attack, and target destination. SEAC calculates

the success of these attacks and the damage that results.

(1) Air War. SEAC models enemy air operations in quite some

detail. Each plane is represented within the model, as is each bomb that the

plane carries. The logic used to generate sorties was derived from a report

prepared for ESC by the Pacific Air Force, Operations Analysis (PACAF/OA).
1 8

While OA's estimate of sorties against air bases was necessary for ESC's

assessment, it did not go far enough. ESC had to translate those sorties into

facility damage, and it had to address all classes of COMMZ installation

targets (see annexes A & B), not just air bases. The resulting adaptation is

shown in Figure 8. First, SEAC defines the type of planes and the ordnance,

then consults a list of air missions to see when the next attack is scheduled

(see Annex C). The model conducts an attack against designated installation

targets, taking plane availability and sortie success probabilities into

account. Upon successfully reaching its target, each plane picks a facility

target (based on attack apportionment directives), and if it is successful in

hitting the facility, the amount of damage is recorded for that particular

16N16 See CESPG, pp. 2-63.
1 7A fully automated system would be desirable. This system might allo-

cate sorties, simulate the air war, and readjust airfield asset dispositions.
After considering several alternatives, ESC decided to employ a hybrid system
rather than to attempt an automated system. Reasonable threat scenarios,

Vcorroborated by intelligence sources, would be posited. The success or failure
of these planned missions would be evaluated using the methodology used by
PACAF{OA.

8ESC received a revised air threat scenario from PACAF's Operations
Analysis Office (OA) as it began considering the need to develop an automated

system for EAK-COMMZ. OA provided not only an air scenario acceptable to ESC's
sponsor but also an outline of how the sortie rates were estimated and %

guidelines on targeting and hitting air base facilities (Air Base Damage Repair .k
Requirements in a Korean Conflict (U) (Headquarters, Pacific Air Forces, May 1985). 0

r
-

-
17

Vp'

%a

a~ ~~~I THEA LO.GIC- .A - Aa.a tt

INITILIZ F
tmp

TYPSR WHAT THEI

PAYLOAD ORDNANCE IS

SEAx WILL4
INVOKE AIR BEGIN NEW ATTACK AT

MODULE WHEN USER-OESIGNATED TIMES -- - -NECESSARY

DETERINE PANESINCLUDES PLANES IN
A ETELA IE P4LAOS ATTACK POOL AND

AV AL B ECK ~ O PLANES N DAWA GE
ATKPLPOOOL THAT HAVE BEEN

REPAIRED

READ IN MISSIONS INDICATE HOW

MisSIONS FOR M ANY PLANES ARE

THIS RAVE SCHEDULED TO ATTACK THE
DESIGNATED INSTALLATION %

%-

FOR

EACH
PLANE ON

MISSION ~

is

PLANE

R EACHING
TARGET ?

NO

PLANE YS DAMAGE POOL

NO
-

Figure 8

18

facility. The probabilistic events that determine the success or failure of

missions represent the stochastic portions of the SEAC Air module.

(2) Ranger/Commando. One of the major concerns in the study

for which SEAC was created, was facility damage resulting from enemy rear area

attacks, particularly by ranger or commando units. The effect of these forces

in the rear, and more importantly their effect on engineer workload, i.e.,

repairing facility damage, was ill-defined but of concern for that very

reason. Having already developed the air logic, ESC used a similar scheme for

ranger/commando type operations. Figure 9 outlines this logic. The major

difference between the two threat modules is that while planes can be used

over and over, the ranger/commando teams are considered to be expendable.

After a team reaches its destination and attacks its target facility with

whatever explosive materiel it carried, SEAC deletes the team. This is not to

say that the team ceases to be a problem in the COMMZ. Once the team uses its

defined load, however, there is no realistic way to estimate what additional

facility damage it may or may not cause in later days. Another point worth

mentioning is that a team may avoid being destroyed during insertion, but it

may not necessarily land on its target installation due to navigational or

equipment error. SEAC places that team in the rear and assumes that it will

then attack either installations or MSR targets if it avoids being eliminated

by rear area security forces. Rear area security forces will, however, be

looking for those teams, and many teams will be destroyed before carrying out

any attacks. As was the case for the Air module, the strategic offensive

forces (SOF) module employs various user-defined probabilities to generate

event outcomes.

b. Reception, staging and deployment (RS&D). While creating SEAC,

ESC was concerned with estimating RS&D requirements. RS&D is the process by

which deploying personnel enter a theater (at a port of debarkation [POD]),

are temporarily assigned to a reception camp, move to a staging base, marry up

with any equipment, and then miiove to their assignments (in the case of most

combat units, that would likely be to the FCZ). CESPG's inability to

adequately treat this area was another reason why ESC constructed its own

model. Figure 10 describes how the RS&D and all types of units found on the ;

Troop file are processed. The process begins by reading the units identified

by UTC entering the theater that day. An important assumption is that if a 0

19

0

%I X:-, 3 76 R.."' L .. J0- 4-' 117 li ' I ' -rW. s--wV

V

RANGER/COMMANDO LOCIC

It I HE ORDNANCE THEY

SETUP WILL CAR Y

CAEATE NIUMBER OF
r

SF TAREAT

(I I) T E A M S I N I C A T E DO A N D A T A
.

INSERTION

(DESIGNATED TIMES)

D S I ., -TEA
TEACM

DESROYIED EM

N,

ARCET AN N o PUT TEAM IN
NSTALLATIO DESIGNATED ARA

YES A

DOES CALCULATE FACILITT ELIMINATE TEAM
TEAM REACH YES D:AAGE aASED ON FRON FURTHER
'ARGET DRDNANCE-TARGET ACTOS A

7 INTEAACTION

NO

PAT TEAM IM S.

TIARGET'S AREA

(III) -, ',

REAR BATTLE EACH DETOE

TEAM
(DAILY) po

NNO

DOE ARE YS

ASSMETEAM SABOTACES -* *
5DYTRES PIPELINE, RR, OR ROAD

RARCETG RET FACILI O

.0M

ASIUE TEAM ATTACKS TERA '. ED'
.-MITAR TAETS RO]IIElAl.

Figure 9

20

e%',

WP

UNIT DIRECTED FACILITY REQUIREMENTS
(Reception, Staging, and Deployment)

L ? IONNT'.f0o

lOO 1*000lt
L01.,IS1ST1

\,otU I~IO 'to./~c:I

UNIT C . I.N0N

ItsO ON _1E ON OIOPIO (ONIONC

6-c 7ISTALLAT ION I

IWI
IO

OWNIN
'15

ACINs, O f o o)

VOONA*DDf.OStOO U:ITS -It 1NOICAIO $T AIVIAL T IKt Q0-OAT.

Figure 10

21

A't

unit is already in the COMMZ (having an arrival date less than 0) when the

scenario begins, SEAC determines the needed facilities and assumes that such

facilities exist. If the unit deploys to the theater, it first goes to a

reception center (designated for units of a particular service arriving at a

POD) for a defined time. If a deploying unit's port of debarkation is the

same as its destination, then the unit is immediately assigned to the

installation and a unit-level factor check is made (where the unit, its

equipment, and its people could generate facility needs). The unit at the '

reception center generates a need for reduced (limited) troop support based

only on the strength of the unit. The needed facilities may have already been

built for units which have since departed. When the unit moves to its

destination, one of three courses is possible: if the destination

geographical location (GEOLOC) is outside the COMMZ, then the unit receives no

further consideration; if the unit goes to a COMMZ destination, then it is

assumed to be assigned to that installation, and a unit-level factor check is

made; if the unit's destination is identified as an RS&D center (staging base)

and the unit is further identified as likely moving to the FCZ (as would be

the case for Corps units), then only a reduced need for facilities is

generated (as was done for the reception centers) and after another defined

period of time, in which the unit is in the staging base, it is assumed to

move on to the FCZ and is no longer considered by SEAC.

c. Task generation. As stated in the overview and implied in the

previous process descriptions, the objective of these rather complicated I

manipulations is the systematic generation of engineer work -- either new

construction or repair.

(1) New construction. It has been shown how facility require-

ments arise from processing the Troop list units. Figure 11 shows that in

addition to unit directed facilities, there are two other ways to indicate

needed facilities. One way is to use the method described in the planning

factor section in which a particular in-tallation type is assumed to have

certain facilities by virtue of its class. An air base has a runway, some

operations buildings, some fuel storage, etc.; otherwise, it would not be an

air base. SEAC defined air bases, air defense artillery (ADA) sites, and I
electronic sites as having certain minimum facilities. (The initial impetus

for this facility requirement device was the absence of facility data for

22

Z

A

DETE MINI G F CILI Y RE UIR MENT KI

REQUIEMENT

it AmO

DETERININ FAIIYsiUREET

NON~

FCILrT FAIIT NRES ACLT

PROJECT AT FEREURMNSA

FACILITY ASSURET TON a ES T.0 ACTION

'1 E AOIT0T4~o OR.FACILITIES)

R 0R O I E I E RE JIA(O RE UIRE D

T' O Is1N~o"R

A EA A SbN(

'ROEC INOOTER

~~~~ PROIT)OC NO A FACILITY T IS
""C' I P .TR' RIIPOI C 

RANi

TO CONSTRUCT

FORAS ?ASCE TONWR

FIS AAA CIONL

\ ,A.S", P'TA 1 .

Figure 11

23w

g."A



Republic of Korea (ROK) installations, other than runway dimensions and POL

storage capacities. It was necessary to prescribe facilities in order for

threat attacks to generate damage.) The other means to enter a facility 2
requirement is through the explicit insertion of it in the Orders file. The

Factor file might not generate a requirement for exceptional facilities (e.g.,

a tactical marine terminal or a contingency pipeline). The project order (as

opposed to the engineer unit order) increases the requirement for a facility

if it is to be built at an installation, or actually generates a construction

project if the project is for an MSR facility. The last thing that is checked

before a construction task is created is whether there is a construction ,

priority/policy for the installation. If there is, then the task is scheduled

with the designated priority and adjusted for any policy-implied civilian

assistance.

(2) Damage repair. Determining damage repair is basically a

two-phase process. ESC has already described the first stage, namely,

attacking and damaging facilities by threat forces. During these attacks,

SEAC tracks the damage for each targeted facility. Damage can be defined

differently for different facilities. Damage on a runway, taxiway, or hard-

stand is defined in terms of craters to be repaired; a pipeline may have a -

length of pipe to be replaced, while buildings (the most common facility) will

accumulate the amount of square feet that has been damaged. When the model

looks at damage to generate repair tasks, it first looks to see if the

facility has been destroyed. SEAC can play damage thresholds for each

facility subclass to indicate when damage is to be considered superficial,

reparable, or structural. If the model considers the amount of damage :
structural, the facility repair is regarded as a total loss. If the model

ass, mes that the facility is destroyed, then it is not repaired; rather, the

on-hand amount of that facility at that installation is reduced by the size of

the destroyed facility. (NB: it will be reconstructed only if there is a

requirement for that facility.) If repair is indicated, then the damage

repair priority/policy of that facility subclass is checked, and if there is a

policy to repair, then the task is scheduled. As in the case of new

construction, adjustments can also be made for any implied civilian A N

assistance. The process steps are shown in Figure 12.

24

%
-~-- -~ ~-~--- A =A~~..F.kYA Y~* - . . i 1



DETERMINING DAMAGE WORKLOAD

THREAT

I._-

(AIR or SO
r

) i ,

MISSION CENKEO RISOCJNS ON-INE FOR

AGAINST TARGET PTANeS AND Sf TEARS

MOL DETEMINES

HOW MANY PLANESITE .S

REACH TARGET

FACILITIES ARE RANGEO _

IN T EAMS OF TARGET
FACILITY SELECTED VALUE PLANES USE LITHER

FOR DAMAGE MISSION OR INSTALLATION
PREFE[REN ES; SOF ATIACK "'%

p' [ SOFT TARGETS SOT~C
DAMAGE A FUNCTIOND AIL AMAGE[ OF FAC IL ITY DAMAGE

CALCLATED C RITERIA. SIZE OF

FACILITY. AND AMOUNT

T ,YPE OF ORDNANCE

is FACILITY REMOVED FROM

TE FACILITY YINSTALLATION (OR MSR).

OESTROYED ONHANO FACILITY ASSET

P.7 COUNT REDUED.

NO

THERE MO ;EPAIR
A PROIY N N EPI

P O I Y / TASK C EATED R'J

YES

CREATE I UPDATE

REPAIR TAS;:

ADJUST FOR CIVILIAN

CONTR IRUTION

TASK PLACEDINSTALLATION

.5

Figure 12

25



(3) Maintenance. Facility maintenance during wartime seems not .

to have received a great deal of study, especially in contingency operations.

Operational facilities will necessarily have to be kept functioning. ESC I

designed SEAC to easily integrate maintenance into the model's task structure,

but data to support such estimates were unavailable or have eluded the efforts .-

of ESC to find. ESC made a compromise in the Korea study where facility

engineers were presumed to be dedicated to maintenance, and were not made U-

available for construction or damage repair work. Although this satisfied the

needs of that study, it must be viewed as a temporary and unsatisfying

accommodation. .. '

d. Work accomplishment. A comparative analysis of how much of the

model is devoted to generating workload versus how much of the model is spent

keeping track of engineer capability and applying it to offset workload would

probably show that 80 percent goes for the former and only 20 percent for the

latter. Figure 13 shows the straightforward way in which capability is

applied to workload tasks. The work process makes four separate passes .

through the COMMZ when scheduling work. The first pass attempts to perform

all vital tasks, the second all critical, the third all essential, and the

fourth all necessary. When SEAC selects a task from the job queue, it first ,

checks to determine if engineer capability at the installation can do the

task. If there is sufficient capability at the installation, the work is '

considered performed, engineer capability is reduced by the amounts necessary

to perform the work, and progress is indicated for the task. If assistance is V

needed, then the engineer support at the region to which the installation

belongs is queried. If the capability is still deficient, then successive

superior regions are queried until either the task (or a portion thereof) can

be performed, or no capability is expended on the task that day and it remains

in the job queue unchanged. If work is performed, the task checks to see if

it has been completed (remember that some projects may be several days in

length). If the finished task was a new construction job, then the particular

on-hand facility assets at the installation are increased by the size of the I
completed facility. SEAC recomputes the capability of installation and region.

engineers on a daily basis. SEAC explicitly tracks all engineer units

(otherwise it would not be able to add, delete, or move engineers through . ,.

26 '4

U.°



I
WORK ACCOMPLISHMENT

JOB QUEUE

TASK I

TASK 2 NEXT TASK IN

'. Q U E UE IS C H E C K-

TASK H

.T. 
'  

THERE ENOUGH

,,ENGINEER CAPABILITY-, YES PERFORM TASK , i i

AT INSTALLATION RCAPILITY
~~~~~~~TO COMPLETE DAYS" DERMN0AAIIY.".,.

""WORK S
N.i

NO THE JOB ?

FINISHEDPERFORM PART OF
THERE ENOUGH

TASK. DECREMENT YESYES

CAPA A T O PEDOY'ES
WORK ?

0 /REMOVE
NO OB FROM

QUEUE

NO WORK ON TASK IS

DONE THAT DAY; IT

REMAINS IN QUEUE
WAS

NO J OB AS

CONSTRUCT10 ION

PROJECT j

YES

+YES

REMOVE FACILITY FROM

A UNODRWAY AND ADO TO

"ONHANOD

SKILL SUBSTITUTION IS ALLOWED (HORIZONTAL A VERTICAL HOURS

CAN BE USED TO SATISFY A DEFICIENCY OF OTHER HOURS).

OW) PARTIAL PERFORMANCE ASSUMES THAT A UNIFORM PORTION OF THE

DAILY REQUIREMENT IS DONE.

.1' Figure 13

orders), and determines their individual strengths before pooling their

capabilities at different locations. S

27

IV. SYSTEM OPERATION "

10. SEAC Execution. SEAC is relatively self-contained, i.e., SEAC is a

single program that processes all data and generates all output. Older compu-

ter models frequently divided systems into various programs with specialized

purposes. Data files were the inter-program means of communication. Such an

approach was not always preferred, but was the only way to proceed because of

memory and storage constraints, or limitations of the software environment.

This was not a problem in developing SEAC. The virtual memory system in which ,- ,,

it was developed, coupled with the dynamic memory allocation of SIMULA,

relieved the need to do things piecemeal. Despite larger memory availability,

one can exceed capacity. The model would almost certainly have to be run on

portions of the theater and troop list if it were used to assess the European

theater, which is considerably larger than Korea. The following paragraphs '

discuss the various preparatory actions that precede executing SEAC and the

sequencing of processes within the model itself. -

a. Preparation. As shown in Figure 2, SEAC accepts a considerable

amount of data. Unlike the very restrictive data file update and creation %-

procedures of the CESPG (harkening back to batch processing days), SEAC data -,

files are expected to be manipulated using a normal system editor. ESC

benefited greatly by having a powerful EMACS full-screen editor.19 EMACS not

only provides an extensive list of editing commands, but also a programming

capability (the now ubiquitous macros) that reformats, extracts, and ,,

manipulates, and saves countless hours as well as obviating the need to write

programs to perform the operations. The ability to use only an editor to

prepare the data depends, however, on the form of the available source data.

A case in point is the asset data. SEAC uses JCS CATCODES for facility

identification; the Army's Integrated Facility System (IFS) data base shows

facility assets by AFCS codes. Though similar, the two systems are not the

same. A program was written to convert the IFS data to the other form. Such

situations arise, but are often dictated by the particular requirements of the

19EMACS Reference Guide, Revision 18.3, (PRIME Computer, Framingham

Massachusetts, 1982).

28 "

#'p

~ ~ ~:-U *.~ U~ .,~i: V *~ %~ ~ - % IN

study and the condition of available data. For a description of the form,

contents, and sources of the various input see Annex C.

b. Program sequencing. Because it simulates activities in the

COMMZ, SEAC is tied to the timetable of the OPLAN. Conceptually, one can

think of SEAC as having four phases: initialization, activation, daily

processing, and termination. Initialization sets up the theater and the

various reference tables used in the simulation. The phases and their

components are shown in Figure 14. Activation and daily processing run

concurrently. The former describes the invocation of the various event lists

%A , for engineer unit and project declarations, unit arrivals, and threat attacks,

while the latter describes the sequence of events that occur each day and are

part of SEAC's normal operations. The events make changes in the COMMZ that

result in various responses. Termination refers to those operations that A
occur upon completion of the scenario and are largely the production of

various summary reports. 0

11. Output. SEAC tracks many items during the course of execution.

There are many reports and error and status messages produced by the system.
..'e

The output is file-based but can be directed to any device -- printer,

terminal, or disk. The user can direct where errors, reports, and execution 0

messages (log entries) are to be written, or accept default assignments made

by SEAC. As with the rest of SEAC, the current list of reports is not

intended to be definitive. One of SEAC's goals was, in fact, to produce

detailed status reports at particular locations to enable US and allied forces

to negotiate facility needs based on foreseeable requirements. The model

maintains the data to be able to do that; it just has not been done. In

addition, if any of the possible enhancements listed below are added to the

model, there would likely be new reports written to accompany their g

a. operations. The reader can refer to Annex E which presents examples of all

the current output.

.

29

W

EXECUTION FLOW IN SEAC

Phase Activity/Process

Initialization Construct Data Tables

.engineer unit capabilities

.facility components (CATCODEs) -

.planning factors
Define Theater (regions & mapcells) :

Create and Locate Installations (GEOLOCs)
Create Facilities and Place into Installations

Define Threat (characteristics & quantities) I: .c

Enter Policy and Priority Assignments ' ".

Initialize Various Runtime Control Parameters

Activation Initiate Event Streams '.

.Troop list processing

.Air mission generator

.SOF insertions

.ORDERS (engineer assignments & projects)

Daily Read Orders

Process Arriving Units From Troop List
War Damage*
Evaluate Facility Requirements
Generate New Engineer Tasks

.Damage repair

.New construction

Determine Available Engineer Capability
Work (new & backlogged tasks by priority)

Regional Result Retention
War Damage*

Termination Prepare Reports

.Installation status

.Engineer unit status

.Summary COMMZ reports

*Attacks can occur at any time during the day.

Figure 14

30
."E

V. MODEL FUTURE

12. Use of SEAC (a Digression). SEAC was designed to be a tool to

analyze COMMZ engineer planning. In its detailed representation of the COMMZ,

estimation of requirements, and treatment of engineer capability, SEAC

provides a powerful tool to examine sustainment engineering planning.

13. Future. ESC has called SEAC a prototype engineer model. It should

not be inferred that the model is not operational; it was successfully used on

the EAK study. It is not, however, intended to be immutable. ESC studies

different OPLANs and different elements of COMMZ engineering missions. The

following items represent a list of features that can be envisioned for the 0

model. The object-based structure of SEAC enables changes and, in particular,

additions to the model to be accomplished easier than in other procedural

languages.

a. Class IV materiel. Associated with CATCODE construction and 0

repair tasks are lists of the materiel needed to complete the job. It would

be relatively easy to include such information in the model and indicate how

such supplies were consumed, by time, and by location. And, analogous to

personnel capability checking, SEAC could compare on-hand assets with required

amounts to identify where shortages hindered completion.

b Maintenance. The major reason why maintenance is not presently

in the model was data. The structure of the model would easily accommodate

such work without significant changes to existing codes. The only obstacle is

credible data to base workload.

c. Logistic network. SEAC does not contain an explicit represen-

tation of the loadings and movement of supplies over the network. It would

not be hard, however, to add the structure and logic necessary to implement

the depot system. the,

d. Equipment. It would be extremely useful to be able to compare a

unit's equipment with its workload requirements. Unfortunately, equipment

amounts associated with CATCODE items are meager and unreliable. If they were

available, equipment would likely be handled much the same as manpower

capability is treated. %

e. Special missions. The special skills, equipment, and locations %

for work performed by pipeline, port, and other engineer units cannot be done]

31 I,

by just any unit. It would be interesting to expand the task and the unit .

treatment associated with these activities. As it is now, these units are

frequently included in TPFDD according to rules of allocation, not verifiable

need.

f. Interruptability. SEAC makes hard-wired decisions about

resource allocation. Whether it is where engineers shall work, or where enemy

strikes will occur, the model will react in a well understood way. It might

be useful and would not be difficult to insert a human player into the

decision process. Normally, the sheer number of such decisions might argue

against adding this feature. Because of SEAC's rich and detailed

representation of the COMMZ, however, the interrupts could be confined to

queries from a single installation, or a single region.

g. Effects. One of the difficulties of modeling engineers is

estimating what the effect of their efforts has on the rest of the force.

Units say they need facilities. The assumption is that if they don't have

them, the war will not go as well. Now it is impossible to say that-.

construction of a damaged pier will mean we will win two brigade-sized

engagements. But we might be able to determine how much the port's processing

capability is reduced. Such results could then be used in theater-level war

games to better represent engineer contributions.

32,;

l,

%

4490

xMiv, Lqicjk-X.

VI. POSTSCRIPT

14. Object-oriented Programming (OOP). In addition to being success-

fully used as the basis for assessing an actual OPLAN, SEAC is important as an

example of object-oriented programming. A popular theme today in many semi-

technical articles laments the marginal productivity gains experienced in

software development in the face of successive orders of magnitude improve-

ments in hardware capability. Sure-fire remedies include: artificial

intelligence methods, ADA, fourth generation languages, OOP, etc. Although

each solution holds promise, there are few examples of successful working

systems. Interestingly, ESC was initially attracted to SIMULA because it

offered the process or scenario view of simulation.20 It did not take long,

however, before the versatility and power of the class and inheritance

features began to dominate the design efforts. The modularity hoped for but

never quite realized in languages, such as FORTRAN, evolved naturally in the

. code written in SIMULA. The experience indicated that translating a modeling

problem into computer code appears to be much easier using object-oriented

design techniques. It can simply not be overstated that the notational and

representational attributes of computer languages are not just a means to

instruct a computer, but are cognitive devices that assist the developer in

structuring and abstracting a problem. SIMULA clearly proved superior in the
area of discrete event modeling to the alternative at ESC -- FORTRAN 77.

Apart from the strong simulation context provided in the SIMULA, other
" ' military modelers may find three aspects of SEAC's development to be

particularly interesting: data definition, compile time checking, and inter-

• object communication.

a. Data structuring. The power of object-oriented languages is in

their ability to encapsulate data structure and behavior. FORTRAN provides

20 SIMULA 67 is generally considered to be the first object-oriented

language. There is a great deal of discussion today over those characteris-
tics of truly object-oriented languages. They should have class templates for

- objects. They should permit inheritance (is multiple better than single?).

Should messages be the only means of inter-object communications? Should they

employ dynamic versus static binding? Perhaps the purists will sort these
questions out. As far as ESC is concerned, SIMULA provided a powerful vehicle
to design and implement a system that it felt employed object-oriented

programming techniques.

33

_ N 3 'N

integers, reals, and text types, and recognizes arithmetic operations and h

alphanumeric manipulation and checking. In SIMULA one can create a type for

each element of the problem (SEAC defined types for facilities, installations,

planes, etc.). Moreover, the various procedures associated with changing and

manipulating these elements and their attributes can be defined. The focus on

data identification, structuring, and associations, coupled with localizing

operations within objects that modify these data, is the heart of object-

oriented design. In particular, the inheritance feature of object-oriented

design, i.e., the ability to define new object classes from existing classes,

probably comes closer to making reuseable code a reality than traditional

subroutine libraries, or even ADA's packages and Modula's modules.
2 1

b. Compilation. One of the interesting artifacts of object-

oriented environments is that some, particularly if LISP-based, have arisen as

interpreted languages, while others have evolved as compiled languages.

Interpreted environments frequently are more user friendly, and do not

necessarily type objects until the last possible moment. Compiled languages '

usually run faster, but will be stricter in terms of the mechanics of separate

compilations and the specification of reference variables. Another distin- -".

guishing characteristic is referred to as strong typing. Strong typing,

within and between compiled units, results in many unintended errors being

flagged at compile-time. Finding these errors at execution time can be :
extremely difficult, or worse still, they may exist but remain undiscovered. -

ESC's overall experience with SIMULA, a compiled language, was extremely

favorable and in the large model environment of the military, may provide the '

better approach.

c. Communication. Another important area of software development

is data hiding (sometimes also referred to as scoping).2 2 This refers to the

ability of one program unit to modify another unit's data. Intentional or -,'

unintentional changes of data have been the downfall of many programs because

data hiding could not be enforced. Object-oriented languages almost by

definition include some form of data hiding. Some, the most extreme being

2 1Cox, Brad J., Object Oriented Programming -- An Evolutionary Approach '
(Addison-Wesley, August 1986).

2 2Wiener, Richard and Richard Sinovec, Software Engineering with Modula-2 -
and ADA (John Wiley & Sons, 1984) pp. 64-68. 0

34

& Smalltalk, limit the accessibility to invoking methods or passing "messages"

between objects.23 SIMULA's data accessibility spans many possibilities: as

an ALGOL superset, it exhibits the normal global/local scoping rules for

block-oriented languages; object parameters and outer-block specified

variables are accessible unless declared to be protected; variables that are

inherited by subclass objects can be hidden from those objects.

pUnfortunately, the version of SIMULA used by ESC did not offer

hidden/protected specifications. There was no way, other than by convention,

V. to limit the permissible direct access of another object's data as long as the

type and qualification of all variable labels were correct (SIMULA uses dot

notation to designate object parameters). The plus side of such access,

however, is the inherent improvement in execution speed of function or

reference access over strict message passing communication. (Message overhead

can be 2 to 2.5 times that of a simple function call). 2 4 Also, such access

within SEAC was largely limited to interrogating the variables; changes and

updates to the variables were largely accomplished by invoking procedures or

methods that were part of the effected objects.

LAST PAGE OF MAIN PAPER

2 3 Smalltalk/V (Digitalk Inc., August 1987)
2 4 Cox, p. 134.

.35

OL W-k- i

KR M' ~ * ~ ~ ~ W~ L! 1~W1

S

~s.

ANNEX A

SIMULA

0

U S
I-,-

p

'N.
4..,

A'

p
S

*55*9; *.

ANNEX A

SIMULA

Paragraph Page

I Purpose A-i

2 Scope A-I

3 What's in a Language? A-2

4 What is SIMULA? A-2

5 Major Features A-3

6 SIMULA And Other HOLs A-10

7 The Compiler A-li

Fizure

A-I Converting Ideas Into a Model A-3
A-2 Basic CLASS Declaration Format A-4
A-3 Example of a Simple Class A-5
A-4 General CLASS Format A-6
A-5 EXAMPLE: Definitions of CLASSes A & B A-6
A-6 EXAMPLE: Equivalent Definition of CLASS B A-7
A-7 Example of SIMULA's Virtual Declaration A-9

1. Purpose. This annex is a brief introduction to SIMULA, the computer

language in which the SEAC model is written.

2. Scope. This annex is not meant to be a tutorial or reference guide;

instead, it will highlight several major features of SIMULA that play an

important part in the design of SEAC. Its goal is to introduce the reader to

the general structure and features of the language as an aid in understanding

the program listings and discussions found in Annex B, Program Documentation.

For any one who desires to learn more about the language, several books and

manuals are available.
1 ,2

IJ Dahl, 0. J., Myhrhaug, B., and Nygaard, K., SIMULA 67 Common Base
Language (Norwegian Computing Center, October 1970).

2 Lamprecht, Gunther, Introduction to SIMULA 67 (Friedr. Vieweg & Sohn,
1983).

A-i

3. What's in a Language? Just as a person's ability to express ideas is

dependent upon his language skills (vocabulary and grammar), a computer modeler

is similarly dependent upon the computer language that he uses and his facility

with it (commands and syntax). How the model is constructed is inextricably

tied to the language that translates the modeler's abstractions into executable

computer instructions. Computer languages in general, and SIMULA in

particular, influence the way a programmer thinks about a problem. An idea or

operation represented in a computer program can probably be expressed in

several computer languages. The language choice, however, will influence the

length of time necessary to reduce that idea to correct executable code. The

features of SIMULA enable a modeler to spend more time on conceptualization;

SIMULA provides the expressive framework and the compiler handles the

translation into machine code. Figure A-i suggests the perceived advantages in

using SIMULA to represent abstractions. With the language playing such an

important role, to understand the design of SEAC (a rather complex model), one

must therefore be acquainted with the basic constructs of SIMULA.

4. What is SIMULA? The SIMUlation LAnguage (SIULA) was initially

developed at the Norwegian Computing Center in Oslo as a simulation language

that could also be used for system descriptions. In fact, early users

considered the communicative value of the language to be as important as its

executability. Many people interested in programming languages have heard of I
SIMULA, but few have had any opportunity to become acquainted with its
features. SEAC actually employs the second version of the language. While the

first version achieved its express purpose, the prescience of the designers

spurred them on to revise the initial design and to make SIULA a true,

general-purpose language. (The story of SIULA's development is recounted in

an interesting collection of language histories compiled by a major computer A;

association.)3 While SIMULA has existed and been available for almost 20

years, it has never gained a following in the United States. That SIMULA was

better received in the European community than in the US, was no doubt because

of the ALGOL orientation in Europe, and the FORTRAN mindset here. It is only

3Nygaard, K. and Dahl, O.J., History of Programming Languages, Part IX,
"The Development of the SIMULA Languages", (Academic Press, 1981).

A-2

CONVERTING IDEAS INTO A MODEL

Work required to convert an idea into instructions
< -- >

Assembler does

Human does this much work this much work
(?)< -- > * < --------------- > !

- Abstract Assembly Machine

Idea Language Instructions

Human does this much work Compiler does this much work(?) < ---------------------------------> * < --------------------------------> , '

Abstract FORTRAN Machine

Idea Instructions

Human does this SIMULA does this much work
(?)<- ----------------> * < --- >

Abstract SIMULIA Machine

Idea Instructions

O

Figure A-i

recently that SIMULA has received the recognition it deserved due, in great

part, to a better understanding of what software engineering research indicates

a computer language should provide.

5. Major Features. SIMULA is an extremely powerful general purpose

computer language. Its CLASS construct was the seminal development in what is

now called object-oriented programming (see paragraph 5.b). It supports the

software engineering goals of abstraction, information hiding, modularity, and

localization. The language designers also sought a language that could be used

by others to easily implement their own tools or constructs and in a way extend

the language toward specialized applications. Understanding the power and

features of SIMULA is not an easy undertaking. This section, as stated above,

is not meant to be a tutorial but seeks only to introduce several major

features of SIMULA that were relied upon during the development of SEAC.

a. ALGOL Kernel. SIMULA is an extension of the computer language %

ALGOL. SIMULA adopts the form of ALGOL and most of its rules and constructs.

One of the often stated strengths of SIMULA is that it has the rich algorithmic

N and procedural power of ALGOL to manipulate information (unlike some primarily
0

simulation languages such as GPSS). SIMULA, however, extends ALGOL's block ON

A-3

concept to allow the generation of block instances that are conceptually P.

separate from the enclosing block, as well as facilities for the treatment of

quasi-parallel systems. ,. .

b. CLASSes. The SIMULA CLASS is a generalization of an ALGOL block,

and was the first implementation of a software construct presently called "data

abstraction." The importance of this software device for problem decomposition

and program construction was initially underestimated, even by SIMULA's

developers, and has only become clear in recent years. A data abstraction

defines a data object and the operations and algorithms that are associated

with it. The use of objects (which has given rise to the term object-oriented
S

programming), which are the instantiations of abstract data types has, in fact,

become one of the pillars of current software engineering theory.

(1) Declaration. A CLASS declaration has the following form:

BASIC CLASS DECLARATION FORMAT

CLASS class name (formal parameters);
parameter specifications;

BEGIN
attribute declarations;
executable statements; -

END;

Figure A-2 I

Interestingly, most of the items are optional. That is, a CLASS need not have

parameters, attributes (procedures or variables), or executable statements. Of

course the presence of formal parameters requires accompanying specifications,

and statements would generally use either global variables, parameters, or ' ''

attributes that have been defined. A CLASS is actually only a template. When

a CLASS is invoked, an object is created that takes the form the CLASS defines.

Multiple copies of the same or different CLASSes may coexist in memory at the

same time. This occurs typically when the following expression is encountered

somewhere in a program: §1'1
NEW class-name (actual parameters) I

A-4

%"

.^ e

This tells the execution supervisor program that an object, defined by the

specifications for CLASS "class-name," is to be created with the parameters

provide . It is only at that time that memory is allocated and execution of I

statements begins (if they exist). Figure A-3 shows a small CLASS, A, which

has a single parameter, P, an internal procedure, PRINT, and a CLASS body which

first modifies the parameter and then invokes PRINT. Execution of this program

Uwould produce this line of output:

5 500

EXAMPLE OF A SIMPLE CLASS

A

BEGIN
CLASS A(P);

INTEGER P;
BEGIN
INTEGER N;
PROCEDURE PRINT;

BEGIN
OUTINT(P,5); OUTINT(N,5); OUTIMAGE;
END

N := 100 * P;
PRINT;

END -- CLASS A

NEW A(5);
END ** PROGRAM **;

Figure A-3

(2) Concatenation. The above example of a CLASS is not all that

different from a FORTRAN subroutine that takes a number, modifies it, and

prints it. In Figure A-4 the power of the CLASS becomes more evident when the

general format of a CLASS is understood. The key entry is the inclusion of the

prefix to CLASS S. This is to be interpreted to mean that a CLASS C has been

defined elsewhere. By prefixing the definition of CLASS S with C, a composite

CLASS is defined which is the concatenation of both CLASS definitions. In

SIMULA class S would be called a subCLASS of CLASS C and would inherit the

attributes, procedures, and body of the prefix CLASS. For example suppose

- CLASSes A and B were defined as in Figure A-5.

A-5

.

GENERAL CLASS FORMAT .

C CLASS S(p) ;
s ;

BEGIN

el;
INNER;
e2;
END:

where:

C is the prefix CLASS (optional)
S is the CLASS being defined

p are the formal parameters associated with S
s are the specifications for the formal parameters
d are the attribute declarations associated with S
el and e2 are executable statements

(INNER will be explained below)

Figure A-4

NJ
EXAMPLE: DEFINITIONS OF CLASSES A & B N

CLASS A(Ap); A CLASS B(Bp);
As; Bs;
BEGIN BEGIN '

Ad; Bd; '
Ael; Bel; 6
INNER; INNER;%

Ae2; Be2
END; END;

Figure A-5

A-6

..

fb' -

yThe preceding definition of B is actually equivalent to the CLASS defined in

Figure A-6.

EXAMPLE: EQUIVALENT DEFINITION OF CLASS B

CLASS B(Ap,Bp);
As;Bs;

N BEGIN
Ad;Bd;
Ael;

Bel;
INNER;
Be2;

Ae2;
END:

Figure A-6

The specification of C CLASS S thus defines a compound object which merges the

elements of both CLASS definitions. It may now become apparent what INNER

means; it provides an opportunity to indicate where the executable statements

of any subCLASS would be executed. If INNER is not expressly included, then it

is assumed to be at the end of the executable statements in the CLASS. For

those readers interested in prototyping and top-down program design, the

*implication of CLASS concatenation should be apparent.

c. VIRTUAL Procedures. The objective of the software design process

is to prepare a coherent and valid representation of the system. Present

design methodologies generally support a top-down approach, where a system is

decomposed in stages. At the highest level one need not worry about

' .' implementation details, but rather only concentrate on identifying the overall

processes or components that should be included in the system. At each level

the process is further refined. Finally, after the overall structure of the

system is well defined, the operational details are implemented. SIMULA

provides a powerful tool to assist system designers -- VIRTUAL Quantities.

This is a means to permit procedure attribute redeclaration at one prefix level

that is valid at outer prefix levels. Variable "x" is defined in the main

program as a reference variable for CLASS cl. CLASSes c2 and c3 are defined as

A-7

i "

subCLASSes of cl and c2 respectively. Note that two attributes are declared in "

each CLASS declaration: an integer variable "i" and a procedure "sub." Normal

scoping rules for SIMULA specify that CLASS variables are normally accessible

only to variables with matching reference qualifications. Thus variable

reference x.i and procedure invocation x.sub should access attributes defined

in cl, since that is the qualification of x. The VIRTUAL declaration extends

scoping to permit redefinition (or definition) of procedures that are specified

in subclasses. Thus, in the case of the program above, x is qualified to

permit referencing objects from CLASS cl. In lines 31, 32, and 33 of Figure A-

7, x points to objects of CLASSes cl, c2, and c3 respectively. When x.i is

printed for each object reference, it accesses the i variable defined in CLASS

cl. Because of the VIRTUAL declaration for procedure sub, however, each call

invokes the routine defined at the lowest CLASS in the concatenated CLASSes:

cl, clc2, or clc2c3. (An example of VIRTUAL procedures in SEAC is the REPAIR

function associated with facility objects. The repair of runway craters,

storage tanks, and maintenance shops entails different treatment. VIRTUAL-

izing the REPAIR procedure permits SEAC to apply the correct repair approach

without having to identify which FACILITY sub-subCLASS has suffered damage.)

SIMUA's run time system will ensure that the correct procedure is used.

d. Separate Compilations. Software engineering practice emphasizes

designs that partition systems or modules along sound functional lines.
4 Also P'

important to promoting productivity is the ability to accumulate a library of

general or special application routines that can be used in new programs.

SIMULA provides such facilities by supporting separate compilation. Each

module" is defined and compiled as a separate external CLASS (or procedure).

When needed, the CLASS is declared in an EXTERNAL statement in the target

program (or another "module"), and its attributes are accessed by prefixing it

to either a block or another CLASS. (The compiler will search through the file

directories for the needed CLASS.) The implications are clear; code

implementing complex arithmetic, matrix operations, special data structures,

specific problem-oriented code, etc., can be separately developed but

conveniently reused in application programs.

4 Parnas, David, On the Criteria to be Used in Decomposing Systems into J,
Modules, 15 Communications of the Association for Computing Machinery 12, 1053
(December 1972).

A-8

EXAMPLE OF SIMULA's VIRTUAL DECLARATION

I. Program

1: COMMENT This program illustrates the VIRTUAL concept;

2:
3: BEGIN
4: REF(cl) x;
5:
6: CLASS cl;
7: VIRTUAL: PROCEDURE sub; < ------- Virtual Procedure Defined;

8: BEGIN

9: INTEGER i;
10: PROCEDURE sub; •

11: BEGIN OUTTEXT(" sub/cl");OUTIMAGE; END;
12: i :- 111;
13: END - cl -;
14:
15: cl CLASS c2;

16: BEGIN S

17: INTEGER i;
18: PROCEDURE sub;

19: BEGIN OUTTEXT(" sub/c2");OUTIMAGE; END;
20: i := 222;

21: END - c2 -;
22:

23: c2 CLASS c3;
24: BEGIN

25: INTEGER i;
26: PROCEDURE sub;

27: BEGIN OUTTEXT(" sub/c3");OUTIMAGE; END;

28: i :- 333;
29: END - c3 -;

30: -%

% 31: x :- NEW ci; OUTTEXT(" x (cl/cl).. i =");OUTINT(x.i,4); x.sub; %

32: x :- NEW c2; OUTTEXT(" x (ci/c2).. i =");OUTINT(x.i,4); x.sub;
33: x :-NEW c3; OUTTEXT(" x (cl/c3). . i -=");OUTINT(x.i,4); x.sub;
34: •

35: END PROGRAM •.;
-A,

II. Program Results

x (cl/cl).. i = 111 sub/cl

x (ci/c2).. i = 111 sub/c2 •

x (ci/c3).. i = 111 sub/c3

Figure A-7

A-9

1.%

6. SIMULA And Other HOLs. The reader may find it interesting that a

language exhibiting many of the traits now being touted for recently developed

languages has been around for almost twenty years. Just how well does SIMULA

compare to languages that have been expressly designed to satisfy the needs of

software engineering? Currently in Department of the Army, FORTRAN and

SIMSCRIPT 11.5 have.been used to implement a preponderance of existing models,

with the latter more common among more recently developed models, especially

those in the Army's wargame hierarchy. One need only say a few things about

FORTRAN: it is by far the most widely used language for modeling; the majority .. %

of its users seem firmly committed to continued use of it; with millions of !

lines of code invested in existing systems, it will be with us for many years

to come; and finally, it is deficient in the tools needed for good software

engineering practice. SIMSCRIPT is a language that is frequently compared to

SIMULA when comparing simulation languages. While SIMSCRIPT is a good

simulation language and much preferred to FORTRAN, it does not offer much more

than FORTRAN does in the area of software engineering (e.g., compile time *.

checking characteristic of the strongly-typed languages such as ADA and "

SIMULA). The two languages that seem more appropriate to contrast with SIMULA

as a high order language are ADA 5 and Modula-26). (PASCAL is not discussed

because many of its flaws have been remedied by its developer in Modula-2.)

ADA was the result of a determination that DOD software costs were escalating '

at an alarming rate, that things were only getting worse, and that hardware and

software systems performance would suffer as a result. A group was formed to

study the problem and offer solutions. ADA is the result of its recommendation "

to develop a new language that would be at home in either a real-time,

multiprocessor or mainframe environment. In fact, ADA has been declared as the '

language of choice for all embedded software. Modula-2, on the other hand, is

the product of one man and evinces its character as single-station, single-user

language. It would take many pages to discuss and contrast the features of

ADA, SIMULA, and Modula-2. The remarkable thing is, however, that SIMULA's

CLASS embodies in a single concept ADA generics, Lasks, data types or packages,

5ANSI/MIL-STD-1815A-1983, Reference Manual for the Ada Programming

Language, (American National Standards, Inc., 1983). J

6Wirth, Niklaus, Programming in Modula-2 (Springer-Verlag, Berlin

Heidelberg, New York, 1982).

A-10

I

and Modula-2 records, processes, or modules. Admittedly the embodiment may not

be an exact functional duplication (sometimes it's better, sometimes it's not).

Nonetheless, the CLASS must be recognized for its power and its elegant

simplicity. It is puzzling that SIMULA never has received wider attention;

perhaps it was (and still is) a case of being ahead of its time.

7. The Compiler. _SIMULA, as a strongly typed language, checks every

program expression to identify typing inconsistencies and illegal references

that might exist in the code. A variable's "type" is its specification label.

Variables "speed" and "pages" might have types of real and integer

respectively, while variable "house" might be a reference type for CLASS

"buildings". The compiler makes sure that assignments are consistent, so a

TEXT variable is not set equal to an integer value. It thus finds many errors

that a FORTRAN compiler for instance would not detect. Identifying errors at
~compiletime rather than run time is extremely advantageous. Run time (i.e.,

execution) errors are much more difficult to detect, duplicate, and trace. The

benefit has a price -- longer compilation times. Fortunately SIMULA supports

separate compilation. In fact, because of the slowness of the compiler, it

becomes almost compulsory to break the model into logical modules to reduce

compilation turnaround. It takes almost 100 PRIME 750 cpu minutes to compile

all the SEAC programs (using version 1 of PRlME's compiler). Wall time is even

worse since it is a function of the number of other user processes competing

with the compiler for machine resources. When usage is low, cpu time

approximates wall time. When the machine is being heavily used, however, wall

time frequently becomes 3 or 4 times greater than cpu time. ESC has never been

happy with the compilation times, but can rationalize it as the price for

dealing with a strongly typed system and the compile-time error identification

that it provides.

LAST PAGE OF ANNEX A

A-11

p

ANNEX B

.,"s -v

,2 " , .

Annex B

pDetailed System Descriptions

Paragraph Page

Introduction B-7

Scope B-7

Special Features B-7
SIMULA's CLASS SIMULATION B-7

Model B-8

Class Description Format B-13

Module Descriptions B-14
Module AVLTREE B-14
Module DATAI B-15
Module DATA2 B-18
Module PROCS B-20 S
Module THREAT B-21
Module SEAKM B-22

Class Descriptions B-24
Class COMPONENT B-24
Class ENGRPOOL B-25
Class FACELEM B-26
Class MAPCELL B-27

Class NKBASES B-31
Class POLICY B-33
Class REPORTER B-34
Class REPORTS B-36
Class ROOT B-39

Class CATREE B-41
Class FACTREE B-43
Class ECAPTREE B-47
Class UOMTREE B-48
Class GEOTREE B-50
Class TGTPREF B-52

Class LINKAGE B-53
Class HEAD B-54
Class ORDLIST B-55
Class LINK B-56
Class NODE B-57
Class CATCOD B-61
Class FACTOR B-63

Class FACTORX B-65
Class ENGRCAP B-67
Class UNOFMS B-68

Class COMPO B-69

Class GEOLOC B-70
Class GEOSUB B-72

B-I

Id

Class PROPERTY B-73
Class ENGRUNIT B-78
Class ORDNANCE B-80
Class BOMB B-81
Class ROCKET B-82
Class DEMOL B-83
Class AIRCRAFT B-84
Class MUNITION B-85
Class PLANE B-86
Class NKAIRBASE B-89
Class SPFUNIT B-91
Class TEAMORG B-92
Class FACILITY B-95 .
Class SURFACE B-98
Class RUNWAY B-101
Class PAVEMENT B-101
Class HARDSTAND B-101 ."
Class BUILDING B-101
Class COMO B-103
Class OPNS B-104
Class REVETMENT BoI04
Class PIER B-104
Class SHOP B-104
Class STORAGE B-o05
Class MEDICAL B-105
Class ADMIN B-105
Class QTRS B-106
Class PETRO B-106
Class POLFACIL B-107
Class TANK B-107 -

Class PIPE B-108 'e .

Class UTILITY B109
Class POWER B-112
Class WASTE B-112
Class WATER B-112
Class TRANSPO B-113
Class ROAD B-115 ,
Class RR B-115 .
Class AUNIT B-115
Class REGION B-116
Class REGCELL B-126
Class HITS B-127
Class TASK B-128
Class INSTALLATION B-131 r
Class AIRBASE B-138
Class AIRPOD B-141
Class CAMP B-142
Class CENTER B-143 .
Class PORT B-145 ", I
Class SEAPOD B-146 'C
Class ADA B-147
Class HOSPITAL B-148
Class DEPOT B-148
Class ELEC B-148 ,

B-2

.0

Processes B-149
Class RSD B-149
Class CHANGE B-153
Class MISSION B-158
Class MISGEN B-161

Class REARAXN B-165

Procedures -- Functions B-170
Procedure RANDPICK B-171
Procedure CATOFAC B-172
Procedure PRIORANK B-174
Procedure RATE B-175
Procedure COUNCK B-176
Procedure C B-177
Procedure SVCSCK B-178
Procedure DIARY B-179
Procedure GET B-179
Procedure TYPEINSTALL B-180
Procedure DEPLOY B-182
Procedure BLAST B-182

Procedures -- Major B-186
Procedure BUILDMAP B-186
Procedure ADDASSETS B-191
Procedure SETUP B-194
Procedure WORK B-199

Index B-202

Figure

B-1 SEAC Program Modules B-10
B-2 Class Hierarchy B-11
B-3 General Format of Class Variable/Parameter Tables B-13
B-4 Declarations and Specifications for Module AVLTREE B-15
B-5 Variable Parameters and Attributes for Module AVLTREE B-15
B-6 Top-level Declarations and Specifications for Module DATAI B-16
B-7 Variable Parameters and Attributes for Module DATAI B-17
B-8 Top-level Declarations and Specifications for Module DATA2 B-18
B-9 Variable Parameters and Attributes for Module DATAI B-19
B-10 Top-level Declarations and Specifications for Module PROCS B-20
B-11 Variable Parameters and Attributes for Module PROCS B-21
B-12 Top-level Declarations and Specifications for Module Threat B-21
B-13 Variable Parameters and Attributes for Module THREAT B-22
B-14 Top-level Declarations and Specifications for SEAKM B-23
B-15 Variable Parameters and Attributes for Module SEAKM B-23
B-16 Parameters and Attributes for Class COMPONENT B-25
B-17 Listing of Class COMPONENT B-25
B-18 Parameters and Attributes for Class ENGRPOOL B-26
B-19 Listing of Class ENGRPOOL B-26
B-20 Parameters and Attributes for Class FACELEM B-26
B-21 Listing of Class FACELEM B-26
B-22 Parameters and Attributes for Class MAPCELL B-28

B-3

- ~- ..

B-23 Listing of Class MAPCELL B-29
B-24 Parameters and Attributes for Class NKBASES B-31
B-25 Listing of Class NKBASES B-32 --

B-26 Parameters and Attributes for Class POLICY B-33
B-27 Listing of Class POLICY B-34
B-28 Parameters and Attributes for Class REPORTER B-35
B-29 Listing of Class REPORTER B-36
B-30 Parameters and Attributes for Class REPORTS B-37
B-31 Listing of Class REPORTS B-37
B-32 Parameters and Attributes for Class ROOT B-40
B-33 Listing of Class ROOT B-41
B-34 Parameters and Attributes for Class CATREE B-41
B-35 Listing of Class CATREE B-42
B-36 Parameters and Attributes for Class FACTREE B-44
B-37 Listing of Class FACTREE B-44
B-38 Parameters and Attributes for Class ECAPTREE B-47
B-39 Listing of Class ECAPTREE B-47 ..
B-40 Parameters and Attributes for Class UOMTREE B-49
B-41 Listing of Class UOMTREE B-49
B-42 Parameters and Attributes for Class GEOTREE B-50
B-43 Listing of Class GEOTREE B-51
B-44 Parameters and Attributes for Class TGTPREF B-52
B-45 Listing of Class TGTPREF B-53
B-46 Parameters and Attributes for Class LINKAGE B-53
B-47 Listing of Class LINKAGE B-54
B-48 Parameters and Attributes for Class HEAD B-54
B-49 Listing of Class HEAD B-55
B-50 Parameters and Attributes for Class ORDLIST B-55
B-51 Listing of Class ORDLIST B-56
B-52 Parameters and Attributes for Class LINK B-57
B-53 Listing of Class LINK B-57
B-54 Parameters and Attributes for Class NODE B-58
B-55 Listing of Class NODE B-59
B-56 Parameters and Attributes for Class CATCOD B-62 -

B-57 Listing of Class CATCOD B-63
B-58 Parameters and Attributes for Class FACTOR B-64
B-59 Listing of Class FACTOR B-65
B-60 Parameters and Attributes for Class FACTORX B-66
B-61 Listing of Class FACTORX B-66
B-62 Parameters and Attributes for Class ENGRCAP B-67
B-63 Listing of Class ENGRCAP B-68
B-64 Parameters and Attributes for Class UNOFMS B-69
B-65 Listing of Class UNOFMS B-69
B-66 Parameters and Attributes for Class COMPO B-70
B-67 Listing of Class COMPO B-70
B-68 Parameters and Attributes for Class GEOLOC B-71
B-69 Listing of Class GEOLOC B-72
B-70 Parameters and Attributes for Class GEOSUB B-73
B-71 Listing of Class GEOSUB B-73 ii
B-72 Parameters and Attributes for Class PROPERTY B-74
B-73 Listing of Class PROPERTY B-75
B-74 Parameters and Attributes for Class ENGRUNIT B-79 _
B-75 Listing of Class ENGRUNIT B-80
B-76 Parameters and Attributes for Class ORDNANCE B-81

B-4

owe

-U
sit.

B-77 Listing of Class ORDNANCE B-81
B-78 Parameters and Attributes for Class BOMB B-82
B-79 Listing of Class BOMB B-82
B-80 Parameters and Attributes for Class ROCKET B-83
B-81 Listing of Class ROCKET B-83
B-82 Parameters and Attributes for Class DEMOL B-84
B-83 Listing of Class DEMOL B-84

B-84 Parameters and Attributes for Class AIRCRAFT B-85
B-85 Listing of Class AIRCRAFT B-85
B-86 Parameters and Attributes for Class MUNITION B-86

B-87 Listing of Class MUNITION B-86
B-88 Parameters and Attributes for Class PLANE B-87
B-89 Listing of Class PLANE B-87
B-90 Parameters and Attributes for Class NKAIRBASE B-90
B-91 Listing of Class NKAIRBASE B-90
B-92 Parameters and Attributes for Class SPFUNIT B-92
B-93 Listing of Class SPFUNIT B-92
B-94 Parameters and Attributes for Class TEAMORG B-93
B-95 Listing of Class TEAMORG B-93

B-96 Parameters and Attributes for Class FACILITY B-96
B-97 Listing of Class FACILITY B-97
B-98 Parameters and Attributes for Class SURFACE B-99
B-99 Listing of Class SURFACE B-99
B-100 Listing of Class RUNWAY B-101
B-1OI Listing of Class PAVEMENT B-101
B-102 Listing of Class HARDSTAND B-101
B-103 Parameters and Attributes for Class BUILDING B-102
B-104 Listing of Class BUILDING B-102
B-105 Listing of Class COMO B-103
B-106 Listing of Class OPNS B-104
B-107 Listing of Class REVETMENT B-104
B-108 Listing of Class PIER B-104
B-109 Listing of Class SHOP B-105
B-110 Listing of Class STORAGE B-105
B-Ill Listing of Class MEDICAL B-l05
B-112 Listing of Class ADMIN B-106
B-113 Listing of Class QTRS B-106
B-114 Parameters and Attributes for Class PETRO B-106
B-115 Listing of Class PETRO B-107
B-116 Listing of Class POLFACIL B-107

B-117 Listing of Class TANK B-108
B-118 Listing of Class PIPE B-109
B-119 Parameters and Attributes for Class UTILITY B-l10
B-120 Listing of Class UTILITY B-l10
B-121 Listing of Class POWER B-112
B-122 Listing of Class WASTE B-112
B-123 Listing of Class WATER B-113
B-124 Parameters and Attributes for Class TRANSPO B-113
B-125 Listing of Class TRANSPO B-114
B-126 Listing of Class ROAD B-115
B-127 Listing of Class RR B-1b5
B-128 Parameters and Attributes for Class AUNIT B-116
B-129 Listing of Class AUNIT B-116
B-130 Parameters and Attributes for Class REGION B-118

B-5

S p.

I

B-131 Listing of Class REGION B-119
B-132 Parameters and Attributes for Class REGCELL B-126
B-133 Listing of Class REGCELL B-127
B-134 Parameters and Attributes for Class HITS B-127
B-135 Listing of Class HITS B-128
B-136 Parameters and Attributes for Class TASK B-129
B-137 Listing of Class TASK B-129
B-138 Parameters and Attributes for Class INSTALLATION B-131
B-139 Listing of Class INSTALLATION B-133
B-140 Parameters and Attributes for Class AIRBASE B-139

B-141 Listing of Class AIRBASE B-139 -4 Q
B-142 Parameters and Attributes for Class AIRPOD B-141
B-143 Listing of Class AIRPOD B-141
B-144 Parameters and Attributes for Class CAMP B-142
B-145 Listing of Class CAMP B-142
B-146 Parameters and Attributes for Class CENTER B-143

B-147 Listing of Class CENTER B-144
B-148 Parameters and Attributes for Class PORT B-146 %
B-149 Listing of Class PORT B-146
B-150 Parameters and Attributes for Class SEAPOD B-146
B-151 Listing of Class SEAPOD B-147 S
B-152 Listing of Class ADA B-148 .
B-153 Listing of Class HOSPITAL B-148
B-154 Listing of Class DEPOT B-148 ". .
B-155 Listing of Class ELEC B-148 "
B-156 Parameters and Attributes for Class RSD B-150
B-157 Listing of Class RSD B-151 "
B-158 Parameters and Attributes for Class CHANGE B-153
B-159 Listing of Class CHANGE B-155
B-160 Parameters and Attributes for Class MISSION B-159
B-161 Listing of Class MISSION B-159 IJ.
B-162 Parameters and Attributes for Class MISGEN B-162
B-163 Listing of Class MISGEN B-163
B-164 Parameters and Attributes for Class REARAXN B-166
B-165 Listing of Class REARAXN B-167
B-166 Parameters and Local Variables for Procedure RANDPICK B-171

B-167 Listing of Procedure RANDPICK B-172
B-168 Parameters and Local Variables for Procedure CATOFAC B-172
B-169 Listing of Procedure CATOFAC B-173
B-170 Parameters and Local Variables for Procedure PRIORANK B-175 -
B-171 Listing of Procedure PRIORANK B-175

B-172 Parameters and Local Variables for Procedure RATE B-176 - j
B-173 Listing of Procedure RATE B-176
B-174 Parameters and Local Variables for Procedure COUNCK B-177
B-175 Listing of Procedure COUNCK B-177
B-176 Parameters and Local Variables for Procedure C B-178
B-177 Listing of Procedure C B-178
B-178 Parameters and Local Variables for Procedure SVCSCK B-178 "- '
B-179 Listing of Procedure SVCSCK B-179 i
B-180 Parameters and Local Variables for Procedure DIARY B-179 : %

B-181 Listing of Procedure DIARY B-179
B-182 Parameters and Local Variables for Procedure GET B-180
B-183 Listing of Procedure GET B-180
B-184 Parameters and Local Variables for Procedure TYPEINSTALL B-181

B-6

W - .
'p ~ - ~%. - . ,

0

B-185 Listing of Procedure TYPEINSTALL B-181
B-186 Parameters and Local Variables for Procedure DEPLOY B-182
B-187 Listing of Procedure DEPLOY B-182
B-188 Parameters and Local Variables for Procedure BLAST B-183

B-189 Listing of Procedure BLAST B-184
B-190 Parameters and Local Variables for Procedure BUILDMAP B-187
B-191 Listing of Procedure BUILDMAP B-188

B-192 Parameters and Local Variables for Procedure ADDASSETS B-192

B-193 Listing of Procedure ADDASSETS B-192
B-194 Parameters and Local Variables for Procedure SETUP B-195
B-195 Listing of Procedure SETUP B-196
B-196 Parameters and Local Variables for Procedure WORK B-199
B-197 Listing of Procedure WORK B-200

1. Introduction. This annex presents the SEAC computer code. In addition to

presenting the individual components of the model, the overall structure of the
model is also introduced.

2. Scope. SEAC was developed to be an in-house tool with which ESC could
conduct a variety of analyses concerning COMMZ and RCZ engineer related
problems. It was intended, however, to be a prototype in that even though it
has demonstrated its viability as a model, succeeding uses will probably
require that parts of the model be enhanced or changed, or that new features be

added. Rather than being a black box, SEAC provides a study environment in

which different problems may be analyzed. Making such changes necessarily

Thus the reason for this manual. Rather than exhaustively tracing the logic of

each program unit, line by line, ESC has chosen to emphasize the fu:octional
and representational features of the model. The purpose of each program
element, its data structure, and its listing are provided.

3. Special Features. The focus of this annex will be on describing the program
elements that make up the model. Several features of SEAC, however, deserve to
be highlighted. These aspects are either so fundamental, important, or
pervasive that they must be understood before understanding the model.

a. SIMULA's CLASS SIMULATION. Computer simulations of real world

situations can take several forms: where the system follows well understood

physical laws, such as a nuclear power plant, the process can be emulated using
mathematical representations (typically sets of differential equations) to
study the effects of changes in different componenets; for those systems that
are subject to random or unpredicatable occurences computer models have been
developed which follow a discrete event approach. Various computer languages
have been developed to facilitate modeling using the latter approach. These
languages generally are categorized by whether they use event, activity, or
process oriented techniques. The language used in SEAC, SIMULA, is a general

purpose language, that happens to be very adaptable to simulation modeling.
One of the system CLASSes provided within SIMULA is SIMULATION. When prefixed
to a CLASS, SIMULATION makes available the necessary software tools to perform
discrete event modeling using the "process view of simulation." This approach

B-7

oJ

%,%

111"iT K~r J 31.11 NZ ~ J 161;_~N1~ fl v _ aLV I - IV ILI A. I7 K- .X- -~ a- a'. -

involves the decomposition of the system under consideration into the processes
that control actions within the target system.

i. Processes. SIMULATION contains a CLASS, called PROCESS, that
provides the synchronization mechanism to allow concurrent operation of
individual objects. Within SEAC such objects are used to represent the dynamic.
aspects of the model: the arrival of troops, engineer unit changes or project
insertion, and periodic damage done by enemy ground and air actions. The %

PROCESSes in SEAC essentially control what happens. Those actions taken
together provide the scenario, or script, to which SEAC reacts.

ii. Lists. In addition to processes, SIMULATION also provides list
processing capability. Because of the dynamic nature of systems being mi eled,
things frequently come and go within a simulation. To save such elements in an -
array structure may be either inefficient, if much of the array goes unused,
or restrictive, if a particular invocation of the model generates more elements
than the array can contain. For such situations SEAC instead relies on
SIMULATION CLASSes LINK and HEAD to implement two-way lists. These lists are
sets of objects in which, in addition to the element data, each member of the
set identifies its predecessor and successor, if they exist, in the list. The
set itself is associated with the HEAD object, whose successor and predecessor
are the first and last members in the list. Lists are especially convenient
when locating list different members is not often needed. For example a list
would be most appropriate to implement a first-in-first-out or last-in-first- q
out processing discipline. In effect the list is a stack which can be viewed
from both directions. SEAC employs lists extensively, and in so doing greatly
reduces reliance on dimensioned arrays.

b. Model. SEAC is a large and complicated program, having over 5000 lines
of code. SEAC is not, however, measurably large in the same may that FORTRAN
programs are large, i.e. lines of code and amount of memory required. Fixing
SEAC's memory requirements is difficult; it operates on a machine having only
3 megabytes of main memory, but utilizes a virtual memory operating system.
Actual memory needs are largely problem specific. First, since memory is
dynamically allocated (using heaps for CLASS objects), SEAC's memory usage
expands and contracts based on the model's needs. This dynamic memory
allocation obviates the need for the programmer/analyst to make data size
specifications usually associated with dimensioning arrays. On the other hand 0

dynamic allocation makes it easy to ignore memory requirements during system

design only to find out during program testing that there is a problem and
difficult restructuring changes are necessary. The size of SIMULA programs in *,

terms of lines of code is also elusive. A subCLASS implicitly contains all the
declarations and operations of its parent plus any other instructions and

declarations that may be defined in its own body. Also, SIMULA's free format
allows multiple statements on one line, and its dot notation (remote accessing)

is an extremely compact, as well as powerful, way to reference external data

and procedures.

i. AVL Trees. AVL (Adel'son-Vel'skii Landis) Trees (see any standard
text on information structures such as Volume I of Knuth's series) are used
throughout SEAC. They are a means of structuring the various reference and
operational data into balanced search trees. With frequent references to
factors, catcodes, components, etc., it was necessary for SEAC to be able to
process such queries efficiently. Two-way lists are not efficient if the set

B-8

is large and many random accesses are anticipated, since searches are
necessarily sequential. AVL trees are an alternative in this situation. If the
data frequently changes (i.e. additions and deletions), however, the
administrative burden of re-balancing the tree structure offsets the gains
associated with reduced search time. The power of SIMULA is probably no better
evidenced than in the ease of implementing AVL trees in SEAC. Two CLASSes,
ROOT and NODE (analagou; to HEAD and LINK), define the mechanism. By prefixing
them to the subCLASSes representing the various data and operational attributes
of the entries, the trees are implemented and the mechanics of how the tree is
rebalanced after insertions is transparent to the user.

ii. Modularization. Modularization in SEAC can refer to two different
but related purposes: modules to be separately compiled, and modules that
provide useful data and procedures (e.g., CLASS SIMULATION can be thought of as

a module in that sense). The tiein is that in SIMULA both of these purposes
are achieved using the ubiquitous CLASS. This paragraph addresses the separate

compilation feature; the section that follows shows the CLASS concatenation
structure. Because of the amount of work that the SIMULA compiler must do,
compilations are slow. In the early stages of development, the entire model
could be comfortably contained in a single program unit. As the code grew, and
the amount of settled code grew in relation to developing code, compile times
increased measurably, especially when there were other users on the system

.' (wall time in particular, since cpu time is only marginally effected by user
loads). SIMULA compilations require that a program unit be compiled after any
referenced CLASSes and before any units that use it. What this means is that
each time a CLASS is changed and recompiled, all the CLASS or program units

=that use that CLASS must be recompiled. In forming modules, to break SEAC into
more manageable units/modules, consideration was given to segregating CLASSes
that were unlikely to be changed as high in the module hierarchy as possible to
reduce unnecessary recompilations. Where practical, CLASSes and subCLASSes
were grouped together if part of a CLASS/subCLASS hierarchy. While the primary
contents of each module are CLASS and PROCEDURE, there are a few global
variables defined within each of the modules which because of scoping rules are
available at the level they are declared, and any lower levels. The modules or

program units used in SEAC are shown in Figure B-l. Everything defined in the
various external CLASSes is available within the block of code that controls. 9

v execution of the simulation.

.%

V%

-B-9

SEAC Program Modules

(main program) .

+-----------------------

SEAKM

I --------------
II II
I setup I

+ +j

I I (external CLASSes) +

--I + ---------------------
I ISIMULATION

I -------------- I I
I I I AVLTREE

model I I
actions 1-<-I--<---I DATAI
block I I I

DATA3

+------------- PROCS

+----------------------- T?,A

+-----------------------------

Figure B-1

The external CLASSes are defined in a hierarchical sense--as opposed to being
conceptually separate entities. Thus the main program BEGIN...END block -

prefixed with THREAT has all the data structures and procedures of SIMULATION, 2.
AVLTREE, etc. available to it because THREAT is a subCLASS of PROCS, which in IX
turn is a subCLASS of DATA3, etc. In the module description paragraph that
follows, the type and purpose of the variables at the outer level of each
module or program in SEACare defined. Note that in terms of scope-visibility ',

rules, declared variables are accessible in the CLASS module they are defined .
and all other CLASS modules that have the defining CLASS in its prefix
struture.

iii. CLASS Hierarchy. The stress on top-down construction is rather
pervasive in a model written in SIMULA. The concatenation of CLASSes and the
CLASS prefixing necessary for separate compilation of program elements enable
the system designer to "think" hierarchy. In so doing the programmer/modeler
can create his own data and functional abstractions that map the problem domain
into the modeling domain. Figure B-2 shows the CLASSes that are defined in
SEAC. It is constructed to show the subCLASS structure of each CLASS. For
example, BUILDING is a subCLASS of FACILITY, which in turn is a subCLASS of
LINK. While one can gain no insight in how things are done within SEAC, this %
chart does give one an idea of the types of things that are included in the
model. (This chart is also the order that CLASSes are described in this
annex.) %-

B-10
"S

Class Hierarchy

ICOMPONENT •

IENGRPOOL
IFACELEM

JMAPCELL j
INKBASES
POLICY

I --------------- I---I
IREPORTER IREPORTS I
I ------------------------------- I I .------------------------------
I OCATREE IJ FACTREE I"

ROOT JECAPTREE I
UOMTREE 1

I IGEOTREE I
JIREALTYTREE

I -- I
ITGTPREF I I
I -- I
IHEAD JORDLIST I
--- I

I ICOMPO I I
I IENGRUNIT I

--------------- -------------------------------------- I
IRUNWAY

ISURFACE IPAVEMENT •

IHARDSTAND
I --------------- I----l-------------- I
ICOMO
I IOPNS I

REVETMENT I
IPIER I
IBUILDING ISHOP I

ISTORAGE I
II IMEDICAL

ILINK IFACILITY IADMIN
I IQTRS

----------------- I --------------- I
I IPOLFACIL I

IIPOL ITANK I
I PIPE

------------------ I --------------- I
. I POWER I

[UTILITY (WASTE I
I, WATERI

I-------------------------------- --ATER ------

-- II .TRANSPO ROAD Iq
B-il RR , e

k

IICATGOD II
I ---------------- I-------------------_

I IFACTOR JFACTORX

I--------------- I.--------------- I
INODE IENGRCAP I

UNOFMS I I
I I ----I---------------I --------------- I

IGEOLOC IGEOSUB I

I ---------------- I---------------- I
IPROPERTY

IBOMB I I

JORDNANCE IROCKET I I ,
IDEMOL I

I I ------------------ I --------------------------------- I
ILINK IAUNIT I

REGCELL I
IREGION
IHITSITASK

I ------------------ --------------------------------------I
I IAIRBASE JAIRPOD I

----------------- I ---------------I
ICAMP ICENTER ,

I ------------------ I- - - - - - - - -
I IPORT ISEAPOD I

I - - - - - - - - - I --------------- I
IINSTALLATION IADA I

IHOSPITAL
IDEPOT I
ELEC II

------------------- I ...--------------- I -------------- I
IAIRCRAFT IBMBR II FTR I, I V

IMUNITION F
IPLANE , '

INKAIRBASE -I
SPFUNIT

TEAMORG I

IRSD I
ICHANGE I

IPROCESS IMISSION
I MISGEN I
I REARAXN

Figure B-2 (continued)

B-12

...... -----

4. Class Description Format. SEAC employs a software design approach usually
referred to as object-oriented programming. Objects are in fact an instance of
the more general software construct called a CLASS (see Annex A for a
discussion of the programming environment). One of the benefits of object- 0
oriented programming is that the code more closely follows the real world
system that is being represented or, in our case, modeled. With much of the
structure and scope of SEAC bound to these objects, the model can be visualized

by looking at the CLASSes that comprise it. The descriptions that follow will
employ a standard format: first the purpose of the CLASS will be briefly

described; second the attributes and parameters of the CLASS will be outlined;
and finally the CLASS itself will be listed. Figure B-3 shows the format of
the second portion of each CLASS description. The table is divided into
several sections: CLASS name, CLASS prefix, parameter specifications and
descriptions (including VIRTUAL designations), variable specifications and
descriptions, and finally procedure specifications and descriptions. Other
than the CLASS name, all entries in the skeleton are optional, so many CLASSes
will not have entries in every portion of the table. Between looking at the ,
purpose and scanning the table, a reader can get a good idea of what the model
is all about without getting into the actual code. For those wanting a fuller
undcrstanding of the structure, i.e. the code, SIMULA must be studied (See
Annex A), and especially the concatenation of CLASSes through CLASS prefixes to
understand inheritance and virtual concepts. (Note that the description format 0

is also followed (with slight variations) for descriptions of the major modules
that comprise SEAC and for the various procedures and functions that were also

defined for the model.)

General Format of Class Variable/Parameter Tables V

C GLASS name ICLASS prefix (if any)

CLASS parameter specifications I
<parameter> <type>* <description> I

S & virtual declarations

variable attribute specifications .9. ,

i procedural attribute definitions I

*/ several conventions will be used for designating "types":
value types for integer, real, character, and boolean

types will be in lower case
object references will be in upper case to highlight

such variables

text references will be in lower case, although they
are actually system objects

arrays will be indicated by the brackets "[]" but will
not identify index ranges, since in many cases that

is not determined until runtime

Figure B-3

B-13
40

5. Module Descriptions. SIMULA supports the development of modular programs. ,

The following general descriptions give an overview of the module hierarchy

used in SEAC. AVLTREE is in reality a general purpose library module that

provides the software constructs to use balanced trees within the model. The

other modules group CLASSes together according to function and scope. The

subCLASSes of FACILITY are all found in module DATA2; and PROCESS CASSes are

not declared until module PROCS because of their need to reference

installation, facility, catcode, engineer units, etc. data all of which must be - '

either previously or coincidentally defined. (Note that in the following

listings the CLASSes that are present in each module are listed without

specifications and bodies, since individual descriptions appear later in this "" '

annex.)

a. Module AVLTREE.

i. General Contents. This CLASS module contains the NODE and ROOT

CLASS definitions necessary to implement the Adel'son-Vel'skii Landis (AVL)

balanced tree information structure that is used extensively throughout SEAC.

The actual operative code for these CLASSes appear later under their own

titles. S

o.,

B -14
'

% ,

a . . -- - -t, *i* : . J if&
.

.
.

i +

ii. Module/CLASS Declarations.

p, Declarations and Specifications for Module AVLTREE

SIMULATION CLASS AVLTREE;
BEGIN
LINK CLASS NODE...
CLASS ROOT..

Figure B-4

iii. Variable Definitions.

Variable Parameters and Attributes for Module AVLTREE

i MODULE: AVLTREE PREFIX: SIMULATION

PARAMETERS: none I

VARIABLE ATTRIBUTES: none

Figure B-5

b. Module DATAI.

i. General Contents. This module defines many of the element CLASSes

used in SEAC. These include those related to engineer units, category codes,
planning factors, and enemy weapon systems.

ii. Module/CLASS Declarations.

B-15

S.e W

ToR-level Declarations and Specifications for Nodule DATAI

AVLTREE CLASS DATAI(L_F,E_F, R_F,NUMGOUNTRIES,

NUMCELLS,VALIDCOUNTRIES, VALIDSERVICES,ATKLOG); .
REF(PRINTFILE) L_F,E_F,RF;
BOOLEAN ATKLOG; :
TEXT VALIDCOUNTRIES,VALIDSERVICES;
INTEGER NUMCOUNTRIES ,NUMCELLS;

BEGIN
REF(CATREE) CATAB;
REF(FACTREE) FACTAB; ..

REF(ECAPTREE) ECAPTAB;
REF(UOMTREE) UOMTAB; N
REAL ARRAY ENGBLDUP(1: NUMCOUNTRIES,0:9) , ENGRAVL(1 : NUMCOUNTRIES);
REAL PI,R180,R360; ''
INTEGER UDAM,UDUD,XUS,XARMY; 5
CHARACTER XISTD,XTSTD;

NODE CLASS CATCOD
LINK CLASS COMPO
CLASS COMPONENT
ROOT GLASS CATREE.................................
NODE CLASS FACTOR

FACTOR CLASS FACTORX
CLASS FACELEM.....................................
ROOT CLASS FACTREE
CLASS ENGRPOOL
LINK CLASS ENGRUNIT...............................
ROOT CLASS ECAPTREE...............................
NODE CLASS ENGRCAP

ROOT CLASS UOMTREE '
NODE CLASS UNOFMS
LINK CLASS ORDNANCE
ORDNANCE CLASS BOMB ;. . . .
ORDNANCE GLASS ROCKET
ORDNANCE CLASS DEMOL
HEAD CLASS ORDLIST

Figure B-6

iii. Variable Definitions. 1

BIi

S

B-16

-. . t'-

Variable Parameters and Attributes for Module DATAI

MODULE: DATAI I PREFIX: AVLTREE 0

I PARAMETERS:
I LF PRINTFILE log file object
I EF PRINTFILE error file object (future)
I RF PRINTFILE report file object (future) I
I NUMCOUNTRIES integer number of nations in this scenario

VARIABLE ATTRIBUTES:

CATAB CATREE catgory code table
FACTAB FACTREE planning factor table
ECAPTAB ECAPTREE engineer unit capability table
UOMTAB UOMTREE unit of measure table
ENGRBLDUP real[] strength buildup in new engr units
ENGRAVL real[] general availability rates

- PI real the constant pi - 22/7
I R180 real radians in 180 degrees

R360 real radians in 360 degrees
UDAM integer random number seed

IUDUD integer random number seed
I.XUS integer constant for US id

XARMY integer constant for Army
XISTD integer constant for initial standard
XTSTD integer constant for temporary standard t

------ --n-==-----=---

Figure B-7

c. Module DATA2.

i. General Contents. This module defines many of the major SEAC
CLASSes. REGIONs, MAPCELLs, GEOLOCs, INSTALLATIONs, FACILITYs, and TASKs are
the major elements that are defined in this external CLASS.

ii. Module/CLASS Declarations. 5

F.

B-17

Top-level Declarations and Specifications for Nodule DATA2

DATAI CLASS DATA2 (XINSTAL,XFACS,XDAYS, PIECEWORK,WORKLOG);
INTEGER XINSTAL,XFACS;

REAL XDAYS,PIECEWORK;
BOOLEAN WORKLOG;

BEGIN

REF(POLICY) ARRAY CNSTRPLCY, RSTRPLCY(I :XINSTAL, 1: NUMCOUNTRIES),
DAMPLCY,MNTNPLCY(1 :XFACS, 1: NUMCOUNTRIES);

REF(REGION) ARRAY RGNSTRUC(1 :NUMCOUNTRIES); 7.

REF(MAPCELL) ARRAY AREAS(I:NUMCELLS);
REF(GEOTREE)GEOTAB;
REF(TGTPREF) ARRAY TGTDEFAULTS(i:XINSTAL);

TEXT FACLIS,CASES, INSTLIS;
REAL ARRAY CUMRQTS(1:NUMCOUNTRIES,1:4,0:XDAYS,l:3);

REAL ARRAY SUPRFICL,STRUCT(I:XFACS,1:2), CRTRSPLIT(l:3),

EMDTAB(1:XFACS), SPNLEN,DRPSPAN(1:2);
REAL BRGFAC,RRDAMFAC, RDDAMFAC, TNKDAMFAC, HTANK,

HBLAD, PIPDAMFAC, STAGETIME;

INTEGER PICKSEED, UTSEL, XPRIO, UHOLE;

CHARACTER XFRAC, XWHL;

LINK CLASS AUNIT.....................................
NODE CLASS GEOLOC

GEOLOC CLASS GEOSUB..................................
ROOT CLASS GEOTREE,

NODE CLASS PROPERTY "

ROOT CLASS REALTYTREE
LINK CLASS REGCELL

CLASS MAPCELL
LINK CLASS REGION '

LINK CLASS HITS.....................................
LINK CLASS TASK
LINK CLASS FACILITY
FACILITY CLASS SURFACE ;

FACILITY CLASS BUILDING
FACILITY CLASS PETRO
FACILITY CLASS UTILITY.

FACILITY CLASS TRANSPO

SURFACE CLASS RUNWAY
SURFACE CLASS PAVEMENT

PETRO CLASS POLFACIL ; I
PETRO CLASS TANK
PETRO CLASS PIPE
BUILDING CLASS COMO
BUILDING CLASS OPNS
BUILDING CLASS REVETMENTBUILDING CLASS PIER •

BUILDING CLASS SHOP ; .. -"
BUILDING CLASS STORAGE ;
BUILDING CLASS MEDICAL

BUILDING CLASS ADMIN
BUILDING CLASS ADI................... - '
BUILDING CLASS QTRS................................

UTILITY CLASS POWER ; %' . I

B-18
S

UTILITY CLASS WASTE
UTILITY CLASS WATER,
TRANSPO CLASS ROAD
SURFACE CLASS HARDSTAND
TRANSPO CLASS RR
LINK CLASS INSTALLATION
CLASS TGTPREF

CLA SS POLICY ... ;CLASS REPORTER

Figure B-8

iii. Variable Definitions.

Variable Parameters and Attributes for Module DATAI

MODULE: DATA2 PREFIX: DATAI

PARAMETERS:
XINSTAL integer number of INSTALLATION subCLASSes
XFACS integer number of FACILITY subCLASSes I

I.XDAYS integer scenario length
I PIECEWORK real threshold for partial day work

" WORKLOG boolean flag to force work reporting

VARIABLE ATTRIBUTES:
CNSTRPLCY POLICY[] construction policies for install.
RSTRPLCY POLICY[] future use for restoration policies

ISDAMPLCY POLICY[] repair policies for facilities
MNTNPLCY POLICY[] future use for maintenance policies
RGNSTRUC REGION[] point to top country region
AREAS MAPCELL[] array of MAPCELL references by id#

IGEOTAB GEOTREE AVL tree of GEOLOC entries
TGTDEFAULTS TGTPREF[] facility target allocation by instll

I FACLIS text list of FACILITY SUBCLASS NAMES
CASES text list of work catgories (eg., const)
INSTLIST text list of INSTALLATION CLASS names

I CUMRQTS real[] cumulative requiremnts (time, etc.)I
SUPRFICL real[] FACILITY superficial dig. threshold
STRUCT real[] FACILITY structural damage threshldl
CRTRSPLIT real[] crater repair priority distribution
EMDTAB real[] FACILITY effective miss distances
SPNLEN real[I notional span lengths for bridges
DRPSPAN real[] amount of explosive to drop a span

I BRGFAC real adjustment to bridge eff miss dist
I RRDAMFAC real amount of track damaged/lb explosivi

RDDAMFAC real amount of road damaged/lb explosivel
TNKDAMFAC real amount explosive necessary for killi
HTANK real nominal height of storage tank
HBLAD real nominal height of bladder tank I
PIPDAMFAC real length pipe damaged/ lbs explosive

I STAGETIME real not used **

B

~B-19

PICKSEED integer a random number seed

UTSEL integer a random number seed

XPRIO integer max priority value

UHOLE integer a random number seed

XFRAC character character indicating "part" 'F'

XWHL character character indicating "whole" 'W'

Figure B-9

d. Module PROCS.

i. General Contents. This module defines those procedures and

processes that control SEAC's operations. Several procedures (BUILDMAP and
ADDASSET) are invoked at startup time to set up the theater and installations.
Processes RSD and CHANGE are also invoked at the beginning, but they will
remain active as long as units continue to arrive in theater and engineer unit
changes or projects are indicated on the orders file.

ii. Module/CLASS Declarations.

Top-level Declarations and Specifications for Module PROCS

DATA2 CLASS PROCS(COMBATIDS,RECEPTIME,STAGETIME);
REAL RECEPTIME,STAGETIME;

TEXT COMBATIDS;
BEGIN

INSTALLATION CLASS AIRBASE
AIRBASE CLASS AIRPOD
INSTALLATION CLASS CAMP
CAMP CLASS CENTER
INSTALLATION CLASS PORT ,

PORT CLASS SEAPOD ;
INSTALLATION CLASS ADA L..............................
INSTALLATION CLASS HOSPITAL.........................
INSTALLATION GLASS DEPOT............................ a.,

INSTALLATION CLASS ELEC
PROCESS CLASS RSD
PROCESS CLASS CHANGE

Figure B-10

B-20

% "%

iii. Variable Definitions.

Variable Parameters and Attributes for Module PROCS

MODULE: PROCS t=PREFIX: DATA2

SPARAMETERS:

COMBATIDS text characters for which DEPLOY is truel

I RECEPTIME real time unit spends in reception ctr
STAGETIME real time unit spends in staging center

VARIABLE ATTRIBUTES: none

Figure B-11

e. Modul,: THREAT.

i. General Contents. This module provides the program elements that
are used to define threat capability and carry out designated attacks against
COMMZ facilities.

ii. Module/CLASS Declarations.

Top-level Declarations and Specifications for Module Threat

PROCS CLASS THREAT;
BEGIN
INTEGER UKILL,USUC,UBEFOR,UDAM,UHIT,UREP,URDY,UFHIT;

REAL RELRATE,LBSTGT,PKILL,PSUC,PBEFOR,PDAM,PHIT,XREP;

REAL ARRAY FACHIT(I:9);
REF(NKBASES)NKAB;
REF(HEAD) PLANETYPES;

REF(ORDLIST)ORDTAB;

CLASS NKBASES
LINK CLASS AIRCRAFT
AIRCRAFT CLASS BMBR
AIRCRAFT CLASS FTR
LINK CLASS MUNITION
LINK CLASS PLANE.................................
PROCESS CLASS MISSION.............................
LINK CLASS NKAIRBASE
PROCESS CLASS MISGEN
LINK CLASS SPFUNIT

LINK CLASS TEAMORG

PROCESS CLASS REARAXN

Figure B-12

iii. Variable Definitions.

B-21

$ p~e~ w ' - V % .-..% L- L ' o~.
°
-'. . " -% L. ..~o % L" .. ,"

Variable Parameters and Attributes for Module THREAT

I MODULE: THREAT I PREFIX: PROCS

PARAMETERS: none N

VARIABLE ATTRIBUTES:
UKILL integer random number seed.
USUC integer random number seed
UBEFOR integer random number seed
UDAM integer random number seed

UHIT integer random number seed
UHIT integer random number seed

UREP integer random number seed
URDY integer random number seed IIUFHIT integer random number seed f

RELRATE real bombs released per pass
LBSTGT real lbs of explosive per target I
PKILL real P(plane destroyed I hit) 0
PSUC real P(mission successlplane at target) -

PBEFOR real P(plane hit before reaching tgt) I
PDAM real not used **
PHIT real P(plane hit)
XREP real repair time parameter
FACHIT real[] Ps(hit/facility) INV'

NKAB NKBASES object containing enemy bases
PLANETYPES HEAD list of plane types Wle

ORDTAB ORDLIST list of ordnance types ", ,

Figure B-13

f. Module SEAKM.

i. General Contents. This is the main program for SEAC. Its principal
role is to read in the file directory that will be used for the scenario,
initialize various scenario parameters, and initiate the operation of the -

model. The only exception is the definition of reports within the REPORTER
CLASS. This is done to provide the user easier access to output routines.

ii. Module/CLASS Declarations.

B-22

Top-level Declarations and Specifications for SEAKM

REF(INFILE)RUNCNTRL;
REF(PRINTFILE)LOGFYL,ERRFYL,REPFYL; 0

TEXT COUNTRIES,SERVICES,RSDFLAGS,TITLE;

TEXT FMISSIONS,FREGIONS,FCATCODES,FFACTORS,FORDERS,F RNGRCOM,FUOM;

TEXT FARRIVALS,FASSETS,FGEOLOC,FCAPABILITY,FPOLICY,F AIRTHREAT;
TEXT IODIRECTIONSF_LOG,FERR,F REP;
INTEGER NXCELLS, NXCOUNTRIES, NXSERVICES,NXINSTALLATIONS, NXFACILITIES, NRPTS;
BOOLEAN ECHO,DUMP,REPCAP,DMPWRK, DMPATK;

S. REAL S IMLENGTH, RCPTIME, STGTIME, DOTASK;

REF(OUTFILE) MONITOR;
REAL ELAPSED,DELTIME;

INTEGER CPUT;

Figure B-14 0

iii. Variable Definitions.

Variable Parameters and Attributes for Module SEAKM

I MODULE: SEAKM I PREFIX: none

I PARAMETERS: not applicable (main program, not an external CLASS)

I VARIABLE ATTRIBUTES:
RUNCNTRL INFILE file object controlling execution

I LOGFYL PRINTFILE file for all output messages
ERRFYL PRINTFILE error file (future)
REPFYL PRINTFILE report file (future)
COUNTRIES text valid country characters
SERVICES text valid service characters

I RSDFLAGS text valid deployment flags (FRQN)
TITLE text title to associate with run
F MISSIONS text name of air mission file
FREGIONS text name of region-mapcell file %

FCATCODES text name of catcode-component file
F FACTORS text name of planning factors file
F ORDERS text name of change file (exog events)

IF RNGRCOM text name of ground threat file .
FUOM text name of unit of measure equiv file .

F ARRIVALS text name of TROOP (unit arrivals) file
F ASSETS text name of facility asset file
F GEOLOC text name of GEOLOC-installation file
F CAPABILITY text name of engineer unit capab file

F POLICY text name of priority-policy file
F AIRTHREAT text name of air threat aob+ file
F LOG text name of log output file
F -ERR text name of error report file
F REP text name of results report file
IODIRECTIONS text buffer containing f * names
NXCELLS integer maximum number of mapcells

B-23

NXCOUNTRIES integer number of countries in scenario m- A

NXSERVICES integer number of services in scenario I
NXINSTALLATIONS integer number of installation subCLASSes -

NXFACILITIES integer number of facility subCLASSes *..

NRPTS integer number of report regions
ECHO boolean indicates input data printing

DUMP boolean indicates data table printing .

REPCAP boolean indicates daily summary of capabltyi l

DMPWRK boolean indicates capability-task printing

SIMLENGTH real scenario duration

RCPTIME real time unit spends in reception ctr

I STGTIME real time unit spends in staging base

I DOTASK real threshold percent for partial work

ELAPSED real total elapsed cpu time
DELTIME real cpu time used during last simul-dayl

CPUT integer total elapsed cpu time (c$tima) I
MONITOR OUTFILE file object for progress messages I

Figure B-15

6. Class Descriptions. The following summary descriptions and program ..

listings are a complete defiition of SEAC's CLASS environment. The order of
the se,tions corresponds to the CLASS-subCLASS Hierarchy order in figure B-2.

a. Class COMPONENT. "

i. Purpose. Objects from class COMPONENT contain detailed engineer

manhour information for either the construction or repairing of facilities of a -"given size. Components reflect manhour data defined for select facilities from

the military services' functional component systems. (This is also an example

of a CLASS that is only a data structure, i.e. there are no operations or

procedures associated with it.)

ii. Class Skeleton.

B-2
A,'

B-24

Nt

Parameters and Attributes for Class COMPONENT

CLASS: COMPONENT I PREFIX: none e

PARAMETERS:copnt ,

ARUOM text unit of measure for component
PART character fractionalization indicator
SIZE real size of defined facility component -

HORZ real daily horizontal manhours to perform

VERT real daily vertical manhours to perform

OTH real daily other hours to perform

j MINDAY integer minimum number of days to commplete

IPROCEDURE ATTRIBUTES: none

--- I
I VARIABLE ATTRIBUTES: none

Figure B-16

iii. Listing. S

Listing of Class COMPONENT

CLASS COMPONENT(UOM,PART,SIZE,HORZ,VERT,OTH,MINDAY);

REF(UNOFMS)UOM;
CHARACTER PART; INTEGER MINDAY;

REAL HORZ,VERTOTH,SIZE; ;

Figure B-17

b. Class ENGRPOOL.

i i. Purpose. Engineer units are explicitly identified and manipulatedin SEAC (see ENGRUNIT). Units are assigned to either an installation or a

region. Since units may be moved into or out of either type of location each 0
day, engineer capability at those locations must be calculated on a daily '-
basis. Reporting requirements also required tallying engineer capability and
utilization by service and priority respectively. Since many (most?) I
installations and regions do not have engineer units asssigned it was deemed
undesirable to have many empty arrays competing for scarce computer memory.
The ENGRPOOL was therefore defined to save storage as well as provide the •
structure to monitor engineer capability and use. Objects from this CLASS are -v

attached only to locations that have engineer units.

I%

B-25
49

ii. Class Skeleton.

Parameters and Attributes for Class ENGRPOOL

I CLASS: ENGRPOOL PREFIX: none

I PARAMETERS: none

VARIABLE ATTRIBUTES: '

HC real total horizontal capability available
that day in manhours

VC real as above but for vertical capability

OC real as above but for general capability
ENGRUSE real[] records daily utilization of capability

by skill and priority
ESVC real[] records daily capability by service

--- I
PROCEDURE ATTRIBUTES:
*TALLY called each day to calculate the total

available manhours at the installation
or region to which the the CLASS

belongs

Figure B-18

iii. Listing.

Listing of Class ENGRPOOL

CLASS ENGRPOOL;

BEGIN
REAL HC,VC,OC;REAL ARRAY ENGRUSE(I:4,1:3),ESVC(I:5);

PROCEDURE TALLY(ES,RP); REF(HEAD)ES;BOOLEAN RP;
BEGIN
REF(ENGRUNIT) E;INTEGER I;
FOR I :- 1,2,3,4 DO

ENGRUSE(I,I):=ENGRUSE(I,2):=ENGRUSE(I,3):=0.O;
FOR I := 1,2,3,4,5 DO ESVC(I) := 0.0;
HC := VC :- OC := 0.0;
E :- ES.FIRST;
WHILE E -/- NONE DO

BEGIN
E.MUSTER(HC,VC,OC,RP,ESVC(E.UTCMSTR.SERVICE));

E :- E.SUC;
END;

END -- TALLY -- ;

END ** ENGRPOOL **;

Figure B-19
c. Class FACELEM.

B-26

~~it

i. Purpose. Much of the facility requirements determined in the model

result from the use of factors. Factors (see CLASS FACTOR) are associated with
units, equipment items, installation types, etc. Each factor contains a list

of FACELEM objects which define either the amount and type of required L
facilities, or other factors that are triggered by that factor.

ii. Class Skeleton.

Parameters and Attributes for Class FACELEM.

CLASS: FACELEM PREFIX: none

I PARAMETERS:
CODE text either the identity of the required fac-I

ility (JCS catcode) or other factor to
be evaluated (usually an equipment item

item) for the owning factor
UOM text the unit of measure for a catcode
RATE real the amount per factor unit to construct

I VARIABLE ATTRIBUTES:
NX FACELEM points to the next object in the factor I

list
--

I PROCEDURE ATTRIBUTES: none •S
Figure B-20

.. iii. Listing.

Listing of Class FACELEM.

* CLASS FACELEM(CODE,RATE,UOM);
1- VALUE CODE,UOM;TEXT CODE,UOM;REAL RATE;

BEGIN REF(FACELEM) NX; END ** FACELEM **;

Figure B-21

d. Class MAPCELL. S

i. Purpose. MAPCELL objects partition the theater of operations into
geographical areas. Within each MAPCELL are the MSR assets that exist or are

ibuilt, a list of the GEOLOCs that fall within its boundary (which in turn

contain the installations identified by that GEOLOC), and pointers to the
regions that contain the MAPCELL. The hierarchical structure by which SEAC %
portrays a theater was created to specifically to address the possibility of

overlapping engineer unit responsibility. (It was also to improve upon the

E rather restrictive Base Complexing scheme implemented in CESPG which tended to
treat grouped GEOLOCs as a single isolated installation.) SEAC uses the
combination of REGIONs (for better representation of engineer capability in

area support roles), MAPCELLs (to represent an actual physical portion of the
theater and indicate what MSR and GEOLOCs are found in it), and INSTALLATIONs

(to represent different facility assets and requirements at those locations

B-27

where units are assigned). Presently three types of MSRs are played: roads,
railroads and pipelines. SEAC also requires that the nation responsible for O,
MSR construction or repair be indicated in each MAPCELL.

ii. Class Skeleton. 1'

Parameters and Attributes for Class MAPCELL

CLASS: MAPCELL f PREFIX: none

PARAMETERS:
I RDRESP integer identifies nation responsible for I

roads ,
I RRESP integer as above, but for railroads I
I PIPRESP integer as above, but for pipeline facilityl

VARIABLE ATTRIBUTES:
GEOSET HEAD set of geolocs in the mapcell
ROADS HEAD set of road facilities in mapcell "',
RRS HEAD set of railroad facilities I
PIPELINE HEAD set of pipeline facilities
TASKLIST HEAD set of outstanding engineer work ..

tasks for MSR construction and I
repair in the mapcell '

DMGLIST HEAD list of new war damage for MSR
facilities occuring during day

RGNLINK REGIONt I vector mapping the mapcell into I
each nations regional heirarchy

TASKPTR TASK points to work task being consid-
ered for accomplishment that day I

AOR boolean true if mapcell is in COMMZ
INDX integer index of the mapcell

--- I
.PROCEDURE ATTRIBUTES: *.

NEEDS invokes requirement generation
for the mapcell and all installa- I
tions found within it - c

DMGCNTRL evaluates the facility damage data
found on the DMGLIST |

HASA boolean inserts MSR assets into the mapcelll * -S
or schedules a new MSR project to I
construct a facility

-- -.

Figure B-22

"

I

*0

B-28

iii. Listing.

Listing of Class MAPCELL
0 1

CASMAPCELL(RDRESP,RRESP,PIPRESP);

NN BEGIN
N REF(HEAD) GEOSET,ROADS,RRS,PIPELINE,TASKLIST,DMGLIST;

REF(REGION) ARRAY RGNLINK(l:NUMCOUNTRIES);
q REF(TASK) TASKPTR; BOOLEAN AOR; INTEGER INDX;

PROCEDURE NEEDS;

BEGIN
REF(GEOLOC)G ;REF(INSTALLATION) I;
IF AOR THEN DMGCNTRL; e

G: -GEOSET.FIRST;

WHILE G-/-NONE DO
BEGIN
I: -G.SITES.FIRST;
WHILE I=/=NONE DO

BEGIN
I .CHEGKIN;
IF AOR THEN 4

BEGIN
I .DAMCNTRL;

I.ASSETS.ASSESS(I);
END;

I :-I.SUC;

END;
G G.SUG;
END;

END ** NEEDS**

PROC EDURE DMGCNTRL;

BEGIN REF(HITS)H;
FOR H :-DMGLIST.FIRST WHILE H 1-NONE DO

BEGINe.
INSPECT H.FAC F

WHEN PIPE DO REPAIR(H.EXTENT,PIPRESP,XARMY,INDX,TASKLIST)
WHEN ROAD DO REPAIR(H.EXTENT,RDRESP,XARMY,INDX,TASKLIST)
WHEN RR DO REPAIR(H.EXTENT,RRESP,XARMY,INDX,TASKLIST);

H.OUT;
END;

END - - DMGGNTRL -- 4

BOOLEAN PROCEDURE HASA(CC,GN,SVC,UM,AMT, STND);

INTEGER CN,SVC;TEXT CC,UM;REAL AMT;GHARACTER STND;
BEGIN
REF(CATCOD)CTCD;REF(FACILITY)F;
REF(COMPO)CMP; REF(COMPONENT)CMPNT; -

CTCD :-CATAB.FIND(GC);
IF CTCD =/= NONE THEN

BEGIN

B-29

L~~~e' ,, A A

CMP CTCD.SELECT(CN,SVC);

IF CMP - NONE AND CN 0 XUS THEN
CMP:-CTCD.SELECT(XUS,SVC);

IF CMP -/- NONE THEN

BEGIN 6

CMPNT:-IF STND - XTSTD THEN CMP.TEMP
ELSE
IF CMP.INTL =/= NONE THEN CMP.INTL ELSE CMP.TEMP;

IF CMPNT -/- NONE THEN
BEGIN

IF CMPNT.UOM.UOM = UM THEN
PIN

F:-CATOFAC(NONE,CMP,AMT,CC,STND)

ELSE
IF CMPNT.UOM.EQVMS - UM THEN

F:-CATOFAC(NONE,CMP,

AMT*CMP.INTL.UOM.COEF,CC,STND);
IF F -- NONE THEN

BEGIN
OUTTEXT("...MAPCELL CATCODE /UOM ERROR ");
OUTTEXT(CC);OUTCHAR('/');OUTTEXT(UM);

OUTIMAGE;
END
ELSE
BEGIN
IF STND=XISTD THEN -J

F.CONSTR(CN,SVC,INDX,TASKLIST)

ELSE F.BUILT :- TRUE;
IF F IS PIPE THEN |
BEGIN

IF PIPELINE-NONE THEN PIPELINE:-NEW HEAD; -

F.INTO(PIPELINE);HASA := TRUE; '

END

ELSE
IF F IS ROAD THEN

BEGIN
IF ROADS-NONE THEN ROADS:-NEW HEAD;
F.INTO(ROADS);HASA := TRUE; -

END

ELSE
IF F IS RR THEN

BEGIN
IF RRS=NONE THEN RRS:-NEW HEAD;

F.INTO(RRS);HASA := TRUE;
END;

END; V
END;

END; v
END; •,

END -- HASA -- ; a
GEOSET :- NEW HEAD;DMGLIST:-NEW HEAD;TASKLIST:-NEW HEAD;
INDX:=I;AOR := TRUE;

END ** MAPCELL **;

Figure B-23

B-30

• " j "" " £." ' - " -" ' ' '.' <-% -. V . '- I '.V ' . " " " "" . ''.'.'.':I

e. Class NKBASES.

i. Purpose. If the threat portion of SEAC is invoked, an object of 0

CLASS NKBASES is created to encompass all enemy airbases. It provides a means
to access enemy airbases and determine the number of planes that are
operational at any time.

ii. Class Skeleton.

Parameters and Attributes for Class NKBASES

CLASS: NKBASES I PREFIX: none

I PARAMETERS: none

VARIABLE ATTRIBUTES:
FIELDS HEAD set of enemy airfield locations

--

PROCEDURE ATTRIBUTES:
I FIND searches FIELDS for a designated N

enemy airfield identifier
AOBPOOL invoked before every mission order

to determine plane availability

Figure B-24 ,0

B-3I

iii. Listing.

Listing of Class NKBASES

CLASS NKBASES;
BEGIN REF(HEAD) FIELDS;
REF(NKAIRBASE) PROCEDURE FIND(L); TEXT L;

BEGIN
REF(NKAIRBASE)X;
X :- FIELDS.FIRST;
WHILE X -/= NONE DO

IF L = X.ID THEN
BEGIN FIND X; X :- NONE; END .
ELSE .

X :- X.SUC;
END -- FIND -- ;

PROCEDURE AOBPOOL(READY); REAL READY;
BEGIN
REF(NKAIRBASE)X;
OUTIMAGE;
OUTTEXT(" POOL BASE BOMBERS FIGHTERS REPAIR");
OUTTEXT(" (T=");OUTFIX(TIME,2,6);OUTCHAR (')');
OUTIMAGE;
X :- FIELDS.FIRST;
WHILE X -/- NONE DO BEGIN X.PREPARE(READY); X:-X.SUC; END; '
END -- AOBPOOL -- ;

FIELDS :- NEW HEAD;
END ** NKBASES **;

Figure B-25

I

B'3

B- 32- .

'U U ' r'I - x -.

f. Class POLICY.

i. Purpose. One of the important features of SEAC is the ability to
prioritize work requirements. In the initial application of the model only
construction and damage repair were included (it would be relatively easy to
add maintenance and restoration work when suitable data become available for
all services). The document discusses the ESC priority system for engineer
assessments in general and the one used for EAK-COMMZ in particular. In that
study ESC settled on assigning priorities in the following manner: new
construction tasks receive a priority based on the type of installation on
which the facility will be built; damage repair, however, will be based on the-p. '
facility category without regard to the installation. Initial reaction to the

results of EAK-COMMZ, however, seemed to indicate that perhaps it would be p.

better to base new construction priorities also on the facility type (such a
change could be easily accommadated). In addition to the priority, ESC also
wanted to represent several other elements of work scheduling or assignment: 0

host nation support, national differences in priorities, build/no-build
policies, and permitting dynamic rather than static priority assignments. As
the components became more numerous ESC realized it was dealing with a broader
issue than just priority, and that while it could define several (many?)
multi-dimensional arrays internal to SEAC, the declaration of a work "POLICY" #
would nicely bind the related topics together.

ii. Class POLICY Skeleton.

Parameters and Attributes for Class POLICY.

CLASS: POLICY I PREFIX: none

PARAMETERS:
PRIOGRP integer the numeric equivalent to the

priority group designation associ-
ated with the work item.

I SHARE real indicates what share of the work
will be done by military engineers -

VARIABLE ATTRIBUTES: none 0
- - -I---

I PROCEDURE ATTRIBUTES: none 0.U
Figure B-26iii. Listing.

B-33

Listing of Class POLICY.

CLASS POLICY(PRIOGRP,SHARE);
PA

INTEGER PRIOGRP;REAL SHARE; I

BEGIN
IF SHARE > 1.0 THEN SHARE .01 * SHARE;
END ** POLICY **o;

Figure B-27

g. Class REPORTER.

i. Purpose. SEAC is a detailed simulation of COMZ facility
requirements and engineer capability to satisfy those needs. Much data is
used, generated and discarded in the course of a simulation. Capturing the
data and making it available in post execution (or in the future perhaps
intra-execution) reports presented a problem of balance. The more data one
wanted to collect the greater the computer memory needed to manare that data.
But there are both practical and physical limits to the amount of data that can
be retained without bringing the model to a computational halt. To get around ?
this problem and at the same time to provide flexibility, SEAC employs the

REPORTER CLASS. One can think of a REPORTER object (or an object with REPORTER

in its prefix--to wit REPORTS) as someone who goes to a location and collects .

information about what is happening in that location. In a sense the object is . ..

very much like a real reporter. The location in SEAC that can receive these
objects are the REGION. Any REGION or subordinate REGION in the regional
heirarchy defined for a study can be designated for reporLing. Thus a user is

able to selectively report on COMMZ areas cf interest and not generate and
retain information that is not of interest to him. The information that is

collected covers: requirements capability, and utilization. It also records 1V

service, work category, and priority sub-classifications.

ii. Class REPORTER Skeleton.

Il

B- 34

z-

"5

Parameters and Attributes for Class REPORTER.

I CLASS: REPORTER I PREFIX: none

PARAMETERS:
- RTITLE text user designated identification for

the REGION being reported

RPRGN REGION points to designated REGION

(. ILENTIM real (not used)

RESULTS VIRTUAL
ONEOUT VIRTUAL called to collect requirements and

*capability data before WORK called

(implemented in REPORTS)

I TWOUT VIRTUAL called after WORK invoked to reportl
on utilization and carryover rqts I

___(implemented in REPORTS)

VARIABLE ATTRIBUTES:
RQT real[] regional requirements by skill and

priority for that day

UTLZ real[] utilization of total regional capa-I
., bility by skill and priority
, 'CAP real[I regional capability by skill for

that day

WRKCAT real[] requirements that day by service
and work type (constr or repair)

. SVCAP real[] total manhour capability for that
region by service

--
PROCEDURE ATTRIBUTES:
ZED zeroes out collection arrays

J~~- -------- - - - - -

1Figure B-28

iii. Listing.

B-35

Listing of Class REPORTER.

CLASS REPORTER(RTITLE,RPRGN,LENTIM);
VALUE RTITLE;TEXT RTITLE;REF(REGION)RPRGN;REAL 'ENTIM;
VIRTUAL : PROCEDURE RESULTS,ONEOUT,TWOUT;

BEGIN
REAL ARRAY RQT,UTLZ(l:4,l:3),CAP(l:3), WRKCAT(1:5,1:2), SVCAP(l:5);

INTEGER P;
PROCEDURE ZED;

BEGIN
CAP(1):=CAP(2):-CAP(3):=O.O;
FOR P :- 1,2,3,4,5 DO

WRKCAT(P,1):=WRKCAT(P,2):=SVCAP(P):=O.O;
FOR P :- 1, 2, 3, 4 DO

BEGIN
RQT(P,I):-RQT(P,2):-RQT(P,3):-O.O;
UTLZ(P,I):-UTLZ(P,2):-UTLZ(P,3):-O.O;

END;
END -- ZED -- "

END *** REPORTER ***;

Figure B-29

h. Class REPORTS.

i. Purpose. Having defined REPORTER objects to collect data, ESC
still needed to format how that data would actually be represented in printed
reports. To do this it defined REPORTS as a sub-CLASS of REPORTER. (Part of
the reason to conceptually separate collection from output was te circumvent
compile waiting times since a change to REPORTS ouput formats requires only
that SEAKM be recompiled, while a change to REPORTER would mean that DATA3,
PROCS, THREAT, and SEAKM would all be re-compiled -- which could take hours
during normal business hours). REPORTS objects do not maintain tables of
information or generate multiple files of output data, instead they distill
information collected for a REGION, format it for eventual printing, prefix the
record with location-time-report stamp, and finally write the record to a
designated output file. When the simulation is over the output file is then

sorted by the stamp field, stripped of the stamp, and then printed out in
proper order. (This last operation is not part of SEAC but is accomplished
using system sort and listing commands that are normally available on any
computer system. .*

ii. Class REPORTS Skeleton.

B-36

S-
V*.\ #

Parameters and Attributes for Class REPORTS,

CLASS: REPORTS I PREFIX: REPORTER

PARAMETERS: none

VARIABLE ATTRIBUTES: none

--- I
PROCEDURE ATTRIBUTES:
ONEOUT VIRTUAL called to extract capability and

I, requirements data from a region
prior to commencing any actual
work that day

TWOUT VIRTUAL called after work is done for day
I to record how capability was

utilized and what work remains
in the TASK queues

Figure B-30
iii. Listing.

Listing of Class REPORTS.

REPORTER CLASS REPORTS;
BEGIN
REAL SMCAP,SMUTLZ;

PROCEDURE TAG(REPCOD,TYM);CHARACTER REPCOD;REAL TYM;
BEGIN
RF.OUTCHAR('&');RF.OUTINT(RPRGN.RCOUNTRY,2);RF.OUTCHAR(':');
R F.OUTINT(RPRGN.RX,3);RF.OUTCHAR(':');

RF.OUTCHAR(REPCOD);RF.OUTCHAR(':');
R F.OUTFIX(TYM,l,5);RF.OUTCHAR(':');

END -- TAG -- ;

PROCEDURE PLAB;
~ BEGIN RF.OUTTEXT(" DAY ");

RF.OUTTEXT(" V I T A L C R I T I C A L ");
RF.OUTTEXT(" E S S E N T I A L N E C E S S A R Y");
R_F.OUTIMAGE;

-' END;
PROCEDURE SLAB;

BEGIN
"; R_F.SETPOS(25);

R_F.OUTTEXT(" HORZ VERT OTHER HORZ VERT
OTHER");
OHR) RF.OUTTEXT(" HORZ VERT OTHER HORZ VERT
OTHER");

R F.OUTIMAGE;

END;

B-37 "

.J.

PROCEDURE ONEOUT;
BEGIN
TAG('C' ,TIME);
RF.OUTFIXCTIME-.4,0,10);R-F.SETPOS(

35);

RF.OUTFIXCCAP(1),1,10);
RF.OUTFIX(CAP(2) .1,10);;A
RF.OUTFIX(CAP(3),l,10);
SMCAP:-CAP(1)+CAP(2)+CAP(3);RF.OUTFIX(SM4CAP,1,10);
FOR P:- 1,2,3,4,5 DO RF.OUTFIX(SVCAP(P),1,1O);
RF.OUTIMAGE;
TAG('R',TIME); RF.OUTFIX(TIME-.4,0,6);R F.SETPOS(25);

FOR P:- 1,2,3,4 DO
BEGINN

R-F.UTFI(RQTPI)1,9)
RF.OUTFIX(RQT(P,l),1,9);%

RF.OUTFIX(RQT(P,3),1,9);
END;

RF.OUTIMAGE;
TAG('T',TIME); RF.OUTFIX(TIME-.4,O,6);RF.SETPOS(25);
FOR P:-1,2,3,4,5 Do

BEGIN
RF.OUTFIx(WRKcAT(P,1),1,10);
RF.OuTFIX(WRKCAT(P,2),1,lO); '
END;

RF.OUTIl4AGE; C

END;

PROCEDURE TWOUT;
BEGIN p

SMUTLZ :-0.0;
TAG('U' ,TIME);
RF.OUTFIX(TIME-.4,O,6);R,_F.SETPOS(25);
FOR P:- 1,2,3,4 DO

BEGIN
RF.OUTFIX(UTLZ(P,1),0,8);
RF.OUTFIX(UTLZ(P,2),0,8);
RF.OUTFIX(UTLZ(P,3),O,8); 'p

SMUTLZ:-SMUTLZ+UTLZ(P,I)+UTLZ(r,2)+UTLZ(P,3);
END;

RF.OUTFIX(IF SMGAP>O.O Ti-EN 100.O*St4UTLZ/SMGAP ELSE 0.0 "

,1,6); RF.OUTIMAGE;

END; -

TAG('C' ,.1);
RF.OUTTEXT("CAPABILITY REPORT FOR '");R_F.OUTTEXT(RTITLE);

RF.OUTTEXT(" (COUNTRY/REGION -1) ;RF.OUTINT(RPRGN.RGOUNTRY,2); -

RF.OUTGHAR('/');RF.OUTINT(RPRGN.RX,2);RF.OUTGHAR(')');
RF.OUTIMAGE;
TAG('C',.2); R_F.OUTTEXT(" DAY 11); R_ F.SETPOS(35);

RF.OUTTEXT(" HORZ VERT OTHER TOTAL)

FOR P:- 1,2,3,4,5 DO

BEGIN RF.OUTTEXT(SERVICES.SUB(P,l));RF.OUTTEXT(', ");END;

RF.OUT TMAGE; .*p

B-38

K wk-

TAG('R' ,.I);
R_F.OUTTEXT("REQUIREMENTS REPORT FOR ");R_F.OUTTEXT(RTITLE);
R_F.OUTTEXT(" (COUNTRY/REGION -");RF.OUTINT(RPRGN.RCOUNTRY,2);

RF.OUTCHAR('/');RF.OUTINT(RPRGN.RX,2);RF.OUTCHAR(')');
R F.OUTIMAGE;
TAG('R',.2);PLAB;TAG('R',.3);SLAB;

TAG('U',.l);
R_F.OUTTEXT("UTILIZATION REPORT FOR ");RF.OUTTEXT(RTITLE);
RF.OUTTEXT(" (COUNTRY/REGION -");R F.OUTINT(RPRGN.RCOUNTRY,2);
R-F.OUTCHAR('/');R F.OUTINT(RPRGN.RX,2);RF.OUTCHAR(')');
R-F.OUTIMAGE;
TAG('U',.2);
R F.OUTTEXT(" DAY ");

R F.OUTTEXT(" V I T A L C R I T I C A L ");
R F.OUTTEXT(" E S S E N I A ECESSAR ")
R-F.OUTTEXT(" TOT");RF.OUTIMAGE;
TAG('U',.3);
RF.SETPOS(25);
R-F.OUTTEXT(" HORZ VERT OTHER HORZ VERT OTHER");
RF.OUTTEXT(" HORZ VERT OTHER HORZ VERT OTHER");
R F.OUTTEXT(" %");R_F.OUTIMAGE;
TAG('T' ,.);
R F.OUTTEXT("WORK SUBMISSION REPORT FOR ");R F.OUTTEXT(RTITLE);
R-F.OUTTEXT(" (COUNTRY/REGION -");R F.OUTINT(RPRGN.RCOUNTRY,2);
RF.OUTCHAR('/');R_F.OUTINT(RPRGN.RX,2);RF.OUTCHAR(')');

R F.OUTIMAGE;
TAG('T',.2);RF.OUTTEXT(" DAY .");

FOR P:- 1,2,3,4,5 DO S
BEGIN
R F.OUTTEXT("- -----------
RTF.OUTTEXT(SERVICES.SFTB(P,I));
R-F.OUTTEXT(DO..... _.);END;

R F.OUTIMAGE;
TAG('T1,.3);RF.SETPOS(25); .I
FOR P :- 1,2,3,4,5 DO R F.OUTTEXT("l NEW CNSTR WAR DMG");,

~~R F.OUTIMAGE; -"

END-*** REPORTS ***; .7

S Figure B-31

i. Class ROOT.

i. Purpose. SEAC keeps a lot of information at hand to conduct the '-

simulation. Catcodes, components, factors, GEOLOCs, engineer unit capability,
*etc. are referred to throughout execution of the model. Accessing this

information becomes a significant part of the overall execution time. There
are many different ways to structure the data to facilitate look-up operations:

lists, trees, hashing tables, or simple indexed arrays. One of the better
techniques uses a balanced binary tree (see discussion of AVL trees). This
device starts with the normal binary tree representation where each node has 0
two nodes that belong to it--one whose key is lower and one whose key is
higher. Constructing such trees is usually a matter of taking the newist

B-39

object and comparing it with successive nodes as it moves through the tree *

until it finds its proper place. If one blindly follows this assignment
strategy for new nodes, however, one may end up with undesirable results (as
would happen if the candidate node entries are already sorted, in which case
the tree would be a single branch with each node having one subordinate node).
One could get around this artifact by randomizing or preprocessing the input, -
or one could make the tree construction logic smarter. ESC uses the balanced -.
tree device (where the difference in branch lengths is never greater than 1) "6
that was developed by Adelson-Velskii and Landis. A ROOT CLASS is constructed
to be a prefix CLASS for objects that will indicate an AVL tree will be used to -

structure data. (See CLASS NODE for the other component of the AVL tree "
implementation.) It is through the ROOT object that the tree is identified,
searched, or traversed (printed out in key order). .,

ii. Class ROOT Skeleton.

Parameters and Attributes for Class ROOT,

-CLASS: ROOT I PREFIX: I• ."

PARAMETERS:
TITLE text title of the tree i .. *

i HEADING text additional labeling text i -

FIND VIRTUAL searches through the tree for an
I entry with submitted key

VARIABLE ATTRIBUTES:
FIRST NODE points to first node (root node) I

IN

PROCEDURE ATTRIBUTES:
TRAVERSE initiates action to move through I

tree in key order, printing node I
information along the way I

Figure B-32

iii. Listing.

B-40

I-o

Listing of Class ROOT,

I CLASS ROOT(TITLE,HEADING);
VALUE TITLE,HEADING; TEXT TITLE,HEADING;

VIRTUAL : REF(NODE) PROCEDURE FIND;

BEGIN
REF(NODE)FIRST;

PROCEDURE TRAVERSE;

BEGIN OUTIMAGE;
OUTTEXT(TITLE); OUTTEXT(");
OUTTEXT(HEADING); OUTIMAGE;
IF FIRST-/-NONE THEN FIRST.TRAVERSE

ELSE
BEGIN OUTTEXT(" TREE IS EMPTY ");OUTIMAGE;END;

END -- TRAVERSE--;
END *** ROOT ***;

Figure B-33

j. Class CATREE.

i. Purpose. CATREE is the ROOT CLASS for an AVL tree used to store
catcode and associated service component data necessary to estimate facility
construction and repair. A procedure, BUILD, has also been included that

constructs the catcode tree.

ii. Class CATREE Skeleton. ,

Parameters and Attributes for Class CATREE.

I CLASS: CATREE I PREFIX: ROOT

I PARAMETERS: none N

I VARIABLE ATTRIBUTES: none

--
lop PROCEDURE ATTRIBUTES:

I FIND Procedure that searches through thej

tree structure for an entry that
matches the submitted key

BUILD Constructs the tree. The source
file is read and tree entries are I

1' created.

Figure B-34

B-41

W .. .

iii. Listing. 6f

Listiny- of Class CATREE.

ROOT CLASS CATREE;
BEGIN
REF(GATCOD) PROCEDURE FIND(T); TEXT T;

BEGIN
REF(CATCOD) C; INTEGER I; .

C :- FIRST;
IF C - NONE THEN

BEGIN FIND :- NONE;
OUTTEXT(" CATCODES EMPTYl) ;OUTIMAGE;
END
ELSE
WHILE C -/- NONE DO

IF T < C.CATLAB THEN C :- C.LL
ELSE
IF T - C.CATLAB THEN BEGIN FIND :-C;C :-NONE; END O

ELSE

C :-C.RL;

END **FIND**

PROCEDURE BUILD(ECHO,CATFILE); TEXT CATFILE; BOOLEAN ECHO;
BEGIN
REF(INFILE)CATIN; REF(CATCOD)CT ;REF(GOMPO)CM; REF(COMPONENT)CP;
INTEGER CN,CS;-
TEXT LSTGODE, CCODE,GNAT, CMAG,GUM, GPART ,CHORIZ ,CVERT ,COTH, GMIN;

TEXT CSVG,GNAME,GTYP;

CATIN :- NEW INFILE(GATFILE);
LSTCODE :- BLANKS(4);
GATIN.OPEN(BLANKS(80)); '

CATIN. INIMAGE; 5

CCODE :- ATIN.IMAGE.SUB(68,4); GNAME :-CATIN.IMAGE.SUB(12,18);
GNAT :- ATIN.IMAGE.SUB(9,l); GSVG :- ATIN.IMAGE.SUB(lO,l);
CMAG :-CATIN.IMAGE.SUB(31,6); GUM :-CATIN.IMAGE.SUB(38,2);
OPART :- ATIN.IMAGE.SUB(41,l); GHORIZ :- CATIN.114AGE.SUB(42,7);
GVERT :- ATIN.IMAGE.SUB(49,7); COTH :- ATIN.IMAGE.SUB(56,7); K

GMIN :-CATIN.IMAGE.SUB(64,3); GTYP :-CATIN.IMAGE.SUB(73,l);

WHILE NOT GATIN.ENDFILE DO
BEGIN
IF ECHO THEN

BEGIN OUTTEXT(">GTC:") ;OUTTEXT(CATIN. IMAGE) ;OUTIMAGE; END; p ,

IF GGODE <> LSTCODE THEN ,9

BEGIN
CT :- FIND(GCODE);
IF CT --NONE THEN

BEGIN
CT :- NEW CATCOD(GCODE,CNAME);
CT.RANK(THIS GATREE); .

B -42

-, .. -- A. A.AA. 4A S. = - -- -~ -~

END;
LSTCODE :- CCODE;

END;

CS SVCSCK(CSVC);
CN :- COUNCK(CNAT);

CM :- CT.SELECT(CN,CS);
IF CM -- NONE THEN

BEGIN
CM :- NEW COMPO(CN,CS);
CM.INTO(CT.COMPOS);
END;

CP - NEW COMPONENT(UOMTAB.FIND(CUM),CPART.SUB(l,1).GETCHAR,
CMAG.SUB(1,6).GETREAL,CHORIZ.SUB(1,7).GETREAL,
CVERT.SUB(1,7).GETREAL,COTH.SUB(I,7).GETREAL,
CMIN.SUB(1,3) .GETINT);

IF CTYP - "C" THEN CM.TEMP -CP
ELSE IF CTYP - "E" THEN CMINTL :-CF

ELSE IF CTYP - "W" THEN CM.WARPR :- CP
ELSE
BEGIN
OUTTEXT("- ----- CATCODE REJECTED--");
OUTTEXT(CATIN.IMAGE.SUB(68,4));
OUTIMAGE;

END;
CATIN. INIMAGE;

END;
CATIN.CLOSE; -

OUTTEXT(" III. CATCODE TREE COMPLETE");OUTIMAGE;
END -- BUILD -- ;

END ** CATREE **;

Figure B-35

k. Class FACTREE.

i. Purpose. The AVL tree for planning factors is implemented by the
ROOT CLASS FACTREE. As with CATREE, procedure BUILD accesses the designated

A file containing the factors and constructs the tree..

ii. Class FACTREE Skeleton.

"AA

_ B-43

AAL

• :I..

Parameters and Attributes for Class FACTREE.

CLASS: FACTREE J PREFIX: ROOT I

PARAMETERS: none

VARIABLE ATTRIBUTES: none

PROCEDURE ATTRIBUTES:
FIND Procedure that searches through thel N

tree structure for an entry that
matches the submitted key

BUILD Constructs the tree. The source
file is read and tree entries are
created.I

Figure B-36

iii. Listing.

Listing of Class FACTREE.

ROOT CLASS FACTREE;
BEGIN

REF(FACTOR) PROCEDURE FIND(T); TEXT T;

REF(FACTOR)F; INTEGER I;
F :- FIRST;
IF F - NONE THEN

BEGIN FIND :- NONE;
OUTTEXT(" FACTORS EMPTY");OUTIMAGE;
END
ELSE
WHILE F =/= NONE DO v

IF T < F.KEY THEN F :- F.LL

ELSE
IF T - F.KEY THEN

BEGIN FIND :- F;F :- NONE; END..
ELSE -

F :- F.RL;
END ** FIND **;

PROCEDURE BUILD(ECHO,FACTORFILE); TEXT FACTORFILE; BOOLEAN ECHO;
BEGIN
REF(INFILE) FACIN; REF(FACELEM)F; REF(FACTOR)FAC;
REF(FACTORX)FAX; INTEGER FC,FS;
TEXT FLST,FACID,FCAT,FUOM,FRATE,FNAT,FSVC; S

B -44 .

% %

FACIN NEW INFILE(FACTORFILE);
FAGIN.OPEN(BLANKS(80));
FACIN. INIMAGE;
FLST:- BLANKS(9);
FNAT:-FACIN.IMAGE.SUB(8,l); FUOM FACIN.IMAGE.SUB(18,2);
FSVC:-FACIN.IMAGE.SUB(9,l); FRATE FAGIN.IMAGE.SUB(21,1O);

WHILE NOT FACIN.ENDFILE DO
BEGIN
FAGID FAGIN.IMAGE.SUB(1,6).STRIP;
FGAT FAGIN.IMAGE.SUB(1l,6).STRIP;
IF FLST - FAGIN.IMAGE.SUB(I,9) THEN

BEGIN

e7IF F -/- NONE THEN F :-F.NX

END
ELSE
BEGIN
IF FNAT - "'THEN

BEGIN
FAG :- FIND(FACID);

IF FAG -- NONE THEN
BEGIN
FAG : NEW FAGTOR(FACID);
FAG.RANK(THIS FACTREE);
F :-FAC.FIRST :-NEW FAGELEM(FGAT,

FRATE.SUB(l,1O) .GETREAL,FUOM);
END
ELSE
IF FAG IS FAGTORX THEN

BEGIN
1AOUTTEXT(". .FAGTOR GENERAL INCONSISTENCY");

OUTTEXT(FAGIN.IMAGE) ;OUTTMAGE;
END
ELSE
BEGIN
F:-FAG.FIRST;WHILE F.NX -/- NONE DO F:-F.NX;

-~~ F:-F.NX:-NEW FAGELEM(FCAT,

END FRATE.SUB(1,1O).GETREAL,FUOM);

IF ECHO THEN

BEGIN OUTTEXT(">FAX:") ;OUTTEXT(FAGIN.IMAGE);
OUTIMAGE; END;

END
ELSE
BEGIN

FG :=COUNGK(FNAT);
FS:=SVCSGK(FSVG);
IF FG*FS - 0 THEN

BEGIN V
OUJTTEXT(". .FACTOR. .ERROR.."); .J

OUTTEXT(FACIN. IMAGE) ;OUTIMAGE;
F :-NONE;

END

ELSE

B-45

BEGIN
IF ECHO THEN BEGIN OUTTEXTQ'>FAC:");

OUTTEXT(FACIN.IMAGE) ;OUTIMAGE;END;

FAC: -THIS FACTREE.FIND(FACID);
IF FAG -- NONE THEN

BEGIN
FAC:-NEW FACTORX(FAGID,O,O);
FAC.R.ANK(THIS FAGTREE); 5i

FAX: -NEW FAGTORX(FACID,FC,FS);
FAX.INTO(FAC QUA FACTORX.VARS);
F:-FAX.FIRST:-NEW FACELEM(FCAT,

FRATE.SUB(1,10).GETREAL,F'UOM);
END
ELSE
IF FAG IS FACTOR THEN

BEGIN
OUTTEXT(". .FACTOR SPEC INCONSISTENCY

OUTTEXT (FAC I N. IMAG E) ; OUT I.-AG E;
F :- NONE;
END
ELSE

BEGIN
FAX :- FAG QUA FAGTORX.SEL(FG,FS); ~
IF FAX - NONE THEN

BEGIN
FAX :-NEW FACTORX(FACID,FC,FS);
FAX.INTO(FAC QUA FACTORX.VARS);

F:-FAX.FIRST:-NEW FACELEM(FCAT,
FRATE.SUB(l,1O) .GETREAL,FUOM);

END
ELSE
BEGIN

F: -FAX.FIRST;
WHILE F.NX -/- NONE DO F :- F.NX; ..
F:-F.NX:-NEW FACELEM(FCAT,

FRATE.SUB(1,10).GETREAL,FUOM);

EN;END;

EEND;

END;

FLST :=FACIN.IMAGE.SUB(l,9);
END;

FACIN. INIMAGE;
END;

FACIN.CLOSE;
OUTTEXT(" IV. FACTOR TREE FINISHED");OUTIMAGE;
END -- BUILD--

END **FACTREE**

Figure B-37 %-

B -46

1. Class ECAPTREE.

i. Purpose. ECAPTREE is the ROOT CLASS that structures the engineer
unit capability data.

ii. Class ECAPTREE Skeleton.

Parameters and Attributes for Class ECAPTREE.

I CLASS: ECAPTREE I PREFIX: ROOT

I PARAMETERS: none

I VARIABLE ATTRIBUTES: none

--- I
I PROCEDURE ATTRIBUTES:

FIND Procedure that searches through thel --

tree structure for an entry that
matches the submitted key

BUILD Constructs the tree. The source N
file is read and tree entries are
created.

0I'- I1

Figure B-38

iii. Listing.

%

ROOTit of Class ECAPTREE.%

BEGIN
REF(ENGRCAP) PROCEDURE FIND(T)" TEXT T; 0

BEGIN

REF(ENGRCAP) C; INTEGER I;
C :- FIRST;

IF C == NONE THEN

BEGIN FIND :- NONE;
OUTTEXT(" CAPABILITY EMPTY") ;OUTIMAGE; -
END
ELSE

WHILE C =/= NONE DO

IF T < C.EUTC THEN C :- C.LL

ELSE
IF T = C.EUTC THEN BEGIN FIND :- C;C :- NONE; END 5

ELSE ,'

C C.RL;

B-47

END **FIND *'*.-

PROCEDURE BUILD(ECHO,ECAPFYL); TEXT ECAPEYL; BOOLEAN ECHO;
BEGIN
REF(NFILF CAPABILITY;
TEXT CAP, CAPUTC, GAPNAT,CAPSVC, CH,CV, CO,CSTR;N

INTEGER XIN,XIS,I,J;-%

CAP :-BLANKS(80);
CAPABILITY :-NEW INFILE(ECAPFYL);
CAPABILITY. OPEN(CAP);.
CAPABILITY. INIMAGE;

CAPUTC CAP.SUB(2,5); GSTR :-CAP.SUB(28,4);
GAPNAT CAP.SUB(8,l); GAPSVC :- CAP.SUB(lO,l);
CH :-CAP.SUB(33,5); CV :-CAP.SUB(38,5); CO :-CAP.SUB(43,5);

WHILE NOT CAPABILITY.ENDFILE DO
BEGIN
IF ECHO THEN BEGIN OUTTEXT(">EUN:");OUTTEXT(CAP);OUTIMAGE;END; 0-~
XIN COUNCK(CAPNAT);
XIS SVCSCK(CAPSVC);-
IF XIN -=0 OR XIS - 0 THEN

BEGIN
IF NOT ECHO THEN OUTTEXT(CAP);
OUTTEXT(". .CAP.. NAT/SVG ERROR -- ");OUTIMAGE; '

END
ELSE
NEW ENGRCAP(CAPUTC,XIN,XIS,CSTR.SUB(1,4) .GETREAL, %t..

CH.SUB(1,5).GETREAL,CV.SUB(1,5).GETREAL,CO.SUB(1,5).GETREAL)
.RANK(THIS ECAPTREE);

CAPABILITY. INIMAGE;
END;

CAPABILITY. CLOSE;

OUTTEXT(" V. ENGINEER CAPABILITY TREE BUILT.");OUTIMAGE; .
END - -CAPBUILD- -;

END **ECAPTREE*;

Figure B3

M. Class UOMTREE.

i. Purpose. UOMTREE is the ROOT CLASS that defines the AVL tree used '
for information concerning valid unit of measures associated with facilities ..

and requirements in an application of the model. As with other AVL trees
procedure BUILD reads the data in from a designated file.

%.

ii. Class UOMTREE Skeleton.

4A

B-48

-Parameters and Attributes for Class UOMTREE. :
4L

CLASS: UOMTREE IPREFIX: ROOT o

PARAMETERS: none O___ %_ _

VARIABLE ATTRIBUTES: none

---I
IPROCEDURE ATTRIBUTES:
IFIND Procedure that searches through thel

tree structure for an entry that -

matches the submitted keyI
BUILD Constructs the tree. The source

file is read and tree entries are
I created.

Figure B-40

iii. Listing.

Listinp- of Class UOMTREE.%

ROOT CLASS UOMTREE;
BEGIN
REF(UNOFMS) PROCEDURE FIND(T); TEXT T;

-~ BEGIN

REF(UNOFMS) U; INTEGER I;
U :- FIRST;
IF U - NONE THEN

fe BEGIN FIND :- NONE;
OUTTEXTQ' UOM EQUIVALENTS EMPTY"); OUTIMAGE;
END
ELSE ,

WHILE U -/- NONE DO
IF T < U.UOM THEN U :- U.LL

ELSE
IF T - U.UOM THEN BEGIN FIND :-U;U :-NONE; END .

ELSE 4

U :- U.RL;
44' END **FIND**

PROCEDURE BUILD(UOMFYL,ECHO); TEXT UOMFYL; BOOLEAN ECHO;
'4'. BEGIN

REF(INFILE)UOMEQUIVS ;TEXT UBUF;

UBUF :- BLANKS(80);
ON UOMEQUIVS :- NEW INFILE(UOMFYL);

UOMEQUIVS .OPEN(UBUF);
UOMEQUIVS. INIMAGE;

*1'f

zB-4]
KS

.

WHILE NOT UOMEQUIVS.ENDFILE DO ". 00

BEGIN
IF ECHO THEN BEGIN OUTTEXT(">UOM:");OUTTEXT(UBUF);OUTIMAGE;END;

NEW UNOFMS(UBUF.SUB(I,2),UBUF.SUB(6,2),UBUF.SUB(10,10).GETREAL, 21!
UBUF.SUB(21,4)).RANK(THIS UOMTREE);

UOMEQUIVS.INIMAGE;
END;

UOMEQUIVS.CLOSE;
OUTTEXT(" XI. UNIT MEASURE EQUIVALENTS TREE BUILT.");OUTIMAGE;
END - -BUILD--;

END ** UOMTREE **;

Figure B-41

n. Class GEOTREE.
A:

i. Purpose. GEOTREE is the ROOT CLASS for an AVL tree of GEOLOCS.
Unlike the ROOT CLASSes described above, the GEOTREE is created by an external .

procedure, BUILDMAP, to enable MAPCELL, REGION, and GEOLOC to be handled in one
routine.

ii. Class GEOTREE Skeleton.

Parameters and Attributes for Class GEOTREE,

CLASS: GEOTREE PREFIX: ROOT

I PARAMETERS: none

VARIABLE ATTRIBUTES: none I

-- 0N
PROCEDURE ATTRIBUTES: p
FIND Procedure that searches through thel ,"'

tree structure for an entry that f
matches the submitted key

BUILD Constructs the tree. The source I
file is read and tree entries are
created.

--- ----- ---- --- === =-

Figure B-42

5 .0

B-50

iii. Listing.

Listing of Class GEOTREE.

ROOT CLASS GEOTREE;
BEGIN
REF(GEOLOC) PROCEDURE FIND(T); TEXT T;

BEGIN
REF(GEOLOC) C; INTEGER I;
C :-FIRST;
IF C - NONE THEN

BEGIN FIND :- NONE;
OUTTEXT(" GEOLOCS EMPTY");OUTI14AGE;
END
ELSE
WHILE C -/- NONE DO

IF T < C.GEOLAB THEN C :- C.LL
ELSE
IF T - C.GEOLAB THEN

BEGIN

IF C IS GEOSUB THEN
BEGIN
C :- C QUA GEOSUB.MAINGEOLOC;
IF C -/- NONE THEN

BEGIN FIND :- C;C :- NONE; END
ELSE
FIND :- NONE;

END
ELSE

BEGIN FIND :- C;C :- NONE; END;%7.
END

ELSE
qC :- C.RL;

END ** FIND **;
END ** GEOTREE **;

Figure B-43

B-51 I

0. Class TGTPREF. '* "

i. Purpose. When an enemy plane attacks an installation, targets are -
grouped by type to emulate likely targeting strategies. When a group of planes e
are assembled to attack an installation the analyst can designate primary,
secondary, etc. targets types or use the default targeting strategies .

associated with the installation CLASS. This target priority scheme is . .

accomplished through the TGTPREF objects. Such objects are associated either
with installations or missions.

ii. Class TGTPREF Skeleton.

Parameters and Attributes for Class TGTPREF, ,- .

CLASS: TGTPREF I PREFIX: none

* PARAMETERS: I
I NIN integer indicates the number of facility I
[- groups associated with the [

installation p
VARIABLE ATTRIBUTES: I
VECTOR real [] indicates how sorties will be

allocated against target groups I

--- I
PROCEDURE ATTRIBUTES: none ,

Figure B-44
iii. Listing.

%

B-52

Listing of Class TGTPREF..

CLASS TGTPREF(NIN);

INTEGER NIN;

BEGIN
REAL ARRAY VECTOR(l:NIN);
END ** TGTPREF **;

Figure B-45

p. Class LINKAGE. .,

i. Purpose. LINKAGE is an internal SIMULA CLASS that is associated 0
with the implementation of two-way lists. Since it is defined by the system
its code is not accessible or controlled by the user. ESC has outlined its
listing below, as well as give explanations of its attributes as done for other
CLASSes. A two-way list is a means of storing data where an object's
predecessor and successor in the list is maintained. LINKAGE when used as a
prefix to a CLASS provides the pointers and several operations that manipulate
them.

-. ii. Class LINKAGE Skeleton.

Parameters and Attributes for Class LINKAGE,

SCLASS: LINKAGE PREFIX: none %

I PARAMETERS: none

VARIABLE ATTRIBUTES: p

SUCC LINKAGE pointer to successor (protected)
PREDD LINKAGE pointer to predecessor (protected)

--- I
IPROCEDURE ATTRIBUTES: p

SUC: LINK supplies reference to SUCC
PRED LINK supplies reference to PRED

Figure B-46

iii. Listing.

B-53

Listing of Class LINKAGE.

CLASS LINKAGE;
BEGIN PZ
REF(LINKAGE) SUCC, PREDD;

REF(LINK) PROCEDURE SUC;
REF(LINK) PROCEDURE PRED;

END **LINK**;

Figure B-47

q. Class HEAD.

i. Purpose. HEAD is an internal SIMULA CLASS that is used to create
two-way lists (sometimes referred to as sets or queues). HEAD is prefixed by
LINKAGE (see above) and also is not accessible directly by programmers. HEAD
performs a similar function as ROOT does for AVL trees -- it is the peg to
which objects in the list are attached.

ii. Class HEAD Skeleton.

Parameters and Attributes for Class READ.

I CLASS: HEAD I PREFIX: LINKAGE -

PARAMETERS: none 'S. P

VARIABLE ATTRIBUTES: none

--- S.,

PROCEDURE ATTRIBUTES:
FIRST LINK point to the first object (LINK) I

in the list
LAST LINK points to the last object in list I
EMPTY boolean returns true is no objects are in I

the list "s.'
CARDINAL integer returns number of objects in list I
CLEAR takes each object out of list, and

sets their SUC & PRED to NONE Z
PU,

Figure B-48 .5 -,"

*.6

- 4

B-54 "

• ' " " " ' '- ,," '.f ,t" ," '," ,,"-., " -,,'% ",.'- " ,",." .",. -" 'v ,"-,'-,,. V ," ",,'.' " I

iii. Listing.

Listing of Class HEAD.

LINKAGE CLASS HEAD;
BEGIN
PROCEDURE CLEAR;
REF(LINK) PROCEDURE FIRST;

pREF(LINK) PROCEDURE LAST; ;
BOOLEAN PROCEDURE EMPTY;............
INTEGER PROCEDURE CARDINAL;

END ** HEAD **"

Figure B-49

r. Class ORDLIST.

.i. Purpose. As indicated by having HEAD as a CLASS prefix, ORDLIST
implements a set that is used to store information about the particular
ordnance used in the current application of SEAC. Only one additional S
attribute has been added to ORDLIST beyond those normally provided by HEAD. To
facilitate finding particular ordnance information (see CLASS ORDNANCE) a FIND
function has been included. By making it an attribute of ORDLIST, the

procedure is associated with the object upon which it will operate,
contributing to understanding and correct usage.

ii. Class ORDLIST Skeleton.

Parameters and Attributes for Class ORDLIST,

CLASS: ORDLIST I PREFIX: HEAD

1 PARAMETERS: none

VARIABLE ATTRIBUTES: none

--- I
PROCEDURE ATTRIBUTES:
FIND ORDNANCE searches through the list until an

J ORDNANCE object with a matching ID ,

I' I is found

Figure B-50

B-55

4'; . -

iii. Listing.

Listing of Class ORDLIST.

HEAD CLASS ORDLIST;
BEGIN
REF(ORDNANCE) PROCEDURE FIND(T); TEXT T;

BEGIN
REF(ORDNANCE) ORDN; INTEGER I;

ORDN :- FIRST; . -

IF ORDN - NONE THEN
BEGIN FIND :- NONE;
OUTTEXT(" ORDNANCE TABLE EMPTY");OUTIMAGE;
END '
ELSE
WHILE ORDN =/- NONE DO

IF T = ORDN.ORDID THEN
BEGIN FIND:-ORDN;ORDN:-NONE;END
ELSE ORDN:-ORDN.SUC;

END ** FIND **;

END ** ORDLIST **;

Figure B-51

s. Class LINK.

i. Purpose. LINK is the third internal SIMULA CLASS (along with

LINKAGE and HEAD) used extensively within SEAC. Objects from CLASSes prefixed .-
by LINK can be put into lists or sets indicated by objects from CLASS HEAD.
The use of sets in SEAC is pervasive. The principal reason is to remove the
need to store data in arrays. Typically in FORTRAN programs one will be told
that the system will accept 10 plane types, or will track 8 time periods, or
will play as many as 100 divisions. Usually one can expect that the reason for "
the ceiling is because somewhere in the program an array has been defined

having maximum dimensions. To a large degree SEAC has avoided such artificial
limits by relying extensively on list and trees. While doing so adds some
additional storage overhead (e.g., successor and predecessor pointers), in the
long run it should provide better memory utilization and access. :

ii. Class LINK Skeleton. "

B-56

1-N

-- V W X. - 14

Parameters and Attributes for Class LINK.

CLASS: LINK PREFIX: LINKAGE 0

i PARAMETERS: none

VARIABLE ATTRIBUTES: none

PROCEDURE ATTRIBUTES:
OUT removes the object from the set
FOLLOW places object after named object I
PRECEDE places object before named object I

I INTO puts object into designated set j

Figure B-52

iii. Listing. k

Listing of Class LINK.

LINKAGE CLASS LINK;
BEGIN
PROCEDURE OUT;
PROCEDURE INTO(H); REF(HEAD(H);

wI"* PROCEDURE PRECEDE(X); REF(LINKAGE)X; •-

PROCEDURE FOLLOW(X); REF(LINKAGE)X; ,

END ** LINK **"

Figure B-53

t. Class NODE.

i. Purpose. Objects in CLASS NODE are the other components, along

with ROOT objects, necessary to implement AVL trees in SEAC. To be useful NODE
must be used as a CLASS prefix to a user defined CLASS of objects that
represent the information to be structured as a tree. (NODE is used in
virtually the same way as LINK, both allow placement of an object in an

-9 information structure--a balanced tree in one case, a doubly linked list in the
other.)

B-57

a'N

....- ., ,, , r. .ima, i i |

ii. Class NODE Skeleton.

Parameters and Attributes for Class NODE.

CLASS: NODE PREFIX: LINK

PARAMETERS:
I TEST VIRTUAL establishes sort key and checks
I whether key match is made I
I DUMP VIRTUAL user provided procedure that prints[

information about the entry

VARIABLE ATTRIBUTES:
BAL integer each NODE object maintains an in-

dicator of its branch's balance

LL NODE points to a NODE defined by TEST tol
preceed the current NODE I

RL NODE points to a NODE defined by TEST tol
succeed the current NODE

---I
PROCEDURE ATTRIBUTES:
RANK inserts the node into a tree iden- I

tified by a designated ROOT. I
SEARCH is the principal routine in the AVLI

tree implementation. It first lo- -
cates the correct position of the
candidate node in the tree. If an

insertion occurs SEARCH will re-
balance the tree if necessary. ,

TRAVERSE moves through the tree in key orderl
printing specified information

Figure B-54

iii. Listing.

B-58
4,

B-58

€"

Listing of Class NODE.

LINK CLASS NODE;
VIRTUAL : INTEGER PROCEDURE TEST;PROCEDURE DUMP;
BEGIN
REF(NODE)LL,RL;
INTEGER BAL;

PROCEDURE RANK(X); REF(ROOT)X;
BEGIN
REF(NODE)T,NEXT;
INTEGER I;BOOLEAN H;
IF X - NONE THEN OUTTEXT("ROOT - NONE")

ELSE
BEGIN 0
T:-X.FIRST;
IF T - NONE THEN X.FIRST:- THIS NODE

ELSE
SEARCH(T,H);

END; '

END *** RANK ***;

PROCEDURE SEARCH(P,H); REF(NODE) P; BOOLEAN H;
BEGIN
INTEGER IC;

REF(NODE) PI, P2;

IC :- TEST(P);~~IF IC < 0 THEN '"

BEGIN".

IF P.LL - NONE THEN
BEGIN
P. LL :- THIS NODE;BAL :-O;H TRUE;
END
ELSE
SEARCH(P.LL,H);

IF H THEN
BEGIN

IF P.BAL 1 1 THEN 0
0. BEGIN P.BAL:=O;H:FALSE;END

ELSE
TF P.BAL - 0 THEN

P.BAL := -1

ELSE
BEGIN S

PI :- P.LL;
IF PI.BAL = -1 THEN

BEGIN
P.LL PI.RL;
PI.RL :-P;

P.BAL 0; 0
P :- PI;
END

B-59

le

ELSE
BEGIN
P2 :- P .RL;
PI.RL :-P2.LL;
P2.LL :- PI;
P.LL P2.RL;
P2.RL P- P;
IF P2.BAL - -1 THEN <-

P.BAL +1
ELSE
P.BAL 0;

IF P2.BAL = +1 THEN
PI.BAL -1
ELSE

PI.BAL 0;
P :- P2;
END;

P.BAL :- 0;
H :- FALSE;

END;
END;

END

ELSE

IF IC - +1 THEN
BEGIN 'I

IF P.RL - NONE THEN
BEGIN
P.RL :- THIS NODE; ; .
BAL :- 0;
H :- TRUE;
END
ELSE

SEARCH(P. RL, H);
IF H THEN -

BEGIN
IF P.BAL- -1 THEN

BEGIN P.BAL:-O;H:-FALSE;END

ELSE

IF P.BAL - 0 THEN
P.BAL :- +1
ELSE P.

BEGIN
P1 :-P.RL; --

IF P1.BAL - THEN
BEGIN

P.RL P1.LL;

PI.LL - P;
P.BAL :- 0;
P :- Pl;
END
ELSE -

BEGIN
P2 :- P1.LL;
P1.LL :- P2.RL;

B-60

t _-.- _: .d , ,, ,,,,. _

%

P2.RL :- PI;
P.RL P2.LL;
P2.LL :- P; 'a

IF P2.BAL - +1 THEN

P.BAL :- -1
ELSE
P.BAL 0;

IF P2.BAL- -1 THEN %
PI.BAL +1
ELSE
PI.BAL 0; .

P :- P2;
END; W.j.

P.BAL 0; 0;
H :- FALSE;
END; 5

END;
END

ELSE
BEGIN
H := FALSE;
END; 5

END-- SEARCH -- ;~'-p

PROCEDURE TRAVERSE;
BEGIN
IF LL=/-NONE THEN LL.TRAVERSE;
DUMP;
IF RL-/=NONE THEN RL.TRAVERSE;
END -- TRAVERSE--

END *** NODE ***F

u. Class CATCOD. I

i. Purpose. SEAC determines engineering requirements in terms of the
amount and type of facilities that are required by friendly forces. These
needs are then translated into actual manhour requirements by looking up how

" much effort must be expended to build (repair, maintain) the facility. This
information comes from the different service facility component systems.
CATCOD objects are not only in the AVL tree associated with CATREE but also I
have an internal data structure of their own. Each object contains a list of
objects (COMPOs) that indicate which nation-service has entries for the
catcode. Each of these objects can have three other objects (COMPONENT) that
provide details on the characterisitics of the facility and the engineer
effort necessary to construct or repair it. S

ii. Class CATCOD Skeleton.

B-61
S

.... .. ,,..=.idldd b id dh i i m ii dll |

Parameters and Attributes for Class CATCOD.

I CLASS: CATCOD I PREFIX: CATCOD

SPARAM',ETIERS :I CATLAB text the four character JCS catcode

identifier of a facility category
CATNAM text the title associated with the

facility category -

VARIABLE ATTRIBUTES:
COMPOS HEAD is a list of different country and -

service entries that have facility I
components in the category

~- - - - ---

PROCEDURE ATTRIBUTES:
TEST sorts entries in the tree by com-

paring CATLABs

SELECT COMPO searches through a list of country
service entries for a match A

DUMP formats information about the
object to be printed during TRANS- I
VERSAL

Figure B-56

iii. Listing.

B'6

'B,

B,'

- -

-, B-62

~Listing of Class CATCOD,

~NODE LASS CATCOD(CATLAB,CATNAM);

BEGIN

, REF(HEAD)COMPOS;

INTEGER PROCEDURE TEST(T);REF(CATCOD) T;
TEST :- IF CATLAB < T.CATLAB THEN -1

1P, ELSE IF CATLAB > T.CATLAB THEN 1 ELSE ;

REF(COMPO) PROCEDURE SELECT(N,S);INTEGER N,S; .

€ BEGIN :0,

€"REF(COMPO) R; V€

~R :- COMPOS.FIRST;
WHILE R -/- NONE DO

IF N - R.NAT AND S -R.SVC THEN

BEGIN SELECT :-R;R :- NONE;END
ELSE R :- R.SUC;* M END -- SELECT --;

PROCEDURE DUMP; '

BEGIN
~REF(COMPO)CMP;

OUTTEXT(CATLAB);SETPOS(10);OUTTEXT(CATNAM);

CMP :- COMPOS.FIRST;
~WHILE CMP -/- NONE DO
~BEGIN

SETPOS(35);OUTINT(CMP.NAT,3);OUTINT(CMP.SVC,3); .
IF CMP.INTL -/- NONE THEN -e

BEGIN SETPOS(50);OUTTEXT("INITIAL"); END;
IF CMP.TEMP -/- NONE THEN %:

BEGIN SETPOS(60);OUTTEXT("TEMPORARY"); END;
~IF CMP.WARPR -/- NONE THEN

BEGIN SETPOS(70);OUTTEXT("WAR DAMAGE"); END; %
OUTIMAGE; ,

- CMP :- CMP.SUC;
ENDE; '

END -- DUMP-;

COMPOS :- NEW HEAD; ,
END ** CATCODClssCTCD

, Figure B-57 '
N V. Class FACTOR.L

i. Purpose. Much of SEAC is involved with determining the amount of -

facilities necessary to support an OPLAN. Some requirements are dictated by N,special analysis of the theater and the plan; most requirements, however,

BEGIN

- result from the use of planning factors. Units, installation types, equipment,
and people can all generate facility needs. SEAC combines all these factors in.,,
the AVL tree defined by CLASS FACTREE. The search key in the tree is the item

B-63-

4 REF(4P0 R;

label that induces the facility requirement. The CLASS type, equipment

identifier, unit type code (UTC), or a special key (e.g., "PEOPLE") are

possible values for KEY. Each FACTOR (and FACTORX) object has a list of

facility items (FACELEMs) associated with it that indicate what the

requirements are. One point worth noting is that FACTOR objects have no nation

or service identifier but are considered applicable for all.

ii. Class FACTOR Skeleton.

Parameters and Attributes for Class FACTOR.

CLASS: FACTOR PREFIX: NODE

I PARAMETERS: I
I KEY text the factor predicate I

VARIABLE ATTRIBUTES:
FIRST FACELEM points to the first facility factorl

for the factor predicate

--
PROCEDURE ATTRIBUTES: V,
TEST integer compares given key to FACTOR key I
DUMP prints out the FACTOR-FACELEM data

Figure B-58 U

iii. Listing.

.11

B-64

a~ ~ ~~~~~~MLI Ac-- - - -~Jp* ~ g'~- P~~d

Listing of Class FACTOR.

%

NODE CLASS FACTOR(KEY);
VALUE KEY;TEXT KEY;
BEGIN
REF(FACELEM) FIRST;

INTEGER PROCEDURE TEST(T);REF(FACTOR)T;
TEST :- IF KEY < T.KEY THEN -1

ELSE IF KEY> T.KEY THEN 1 ELSE 0;

PROCEDURE DUMP;
BEGIN
REF (FACELEM) FAXEL;
OUTTEXT (KEY) ; OUTIMAGE;
FAXEL :- FIRST;
WHILE FAXEL -/- NONE DO

BEGIN SETPOS(lO);
OUTTEXT(FAXEL.CODE);OUTFIX(FAXEL.RATE,2,10);
OUTCHAR(' ');OUTTEXT(FAXEL.UOM); OUTIMAGE;

FAXEL :- FAXEL.NX;
END;

END -- DUMP -- ;

END ** FACTOR **;

Figure B-59

w. Class FACTORX.

i. Purpose. FACTORX is a subCLASS of FACTOR that is used when factors
must be distinguish by nation and service. Most factors fall in this category.

The initial occurence of a factor of this type gives rise to an entry in the

tree with country and service variables set to 0. Another FACTORX object is
created, with the given country and service values, and placed in the VARS
list.

ii. Class FACTORX Skeleton.

-B-65

- 01

Parameters and Attributes for Class FACTORX.

ICLASS: FACTORX IPREFIX: FACTOR l

IPARAMETERS:
ICOUN integer designates nationality
SRVC integer designates service

VARIABLE ATTRIBUTES: N
IVARS HEAD contains the list of FACTORXI

distinguished by country, service

--I
IPROCEDURE ATTRIBUTES:
IDUMP prints out "all" factor data
SEL FACTOR picks the object in VARS that has

I the required country, service

Figure B-60N

iii. Listing.

Listing of Class FACTORK.

.- ,

FACTOR CLASS FACTORX(COUN,SRVC);
INTEGER COUN, SRVC; - *

BEGIN
REF(HEAD)VARS;

REF(FACTOR)PROCEDURE SEL(C,S) ;INTEGER C,S;
BEGIN
REF(CFACTORX) FX;
FX: -VARS.FIRST;
WHILE FX -/- NONE DO

IF C-FX.COUN AND S-FX.SRVC THEN
BEGIN SEL :- FX;FX :- NONE;END
ELSE FX :- FX.SUC;

END -- SEL --

PROCEDURE DUMP; ,

BEGIN
REF(FACELEM) EL; REF(FACTORX) X;
FX :- VARS.FIRST;
WHILE FX -/- NONE DO

BEGIN
OUTTEXT(FX.KEY);OUTINT(FX.COUN,1O);OUTINT(FX.SRVC,1O);OUTIMACE; *

EL :- FX.FIRST;
WHILE EL -/- NONE DO

BEGIN SETPOS(lO);
OUTTEXT(EL.CODE);

B- 66

'17

OUTFIX(EL.RATE,2,i0);OUTCHAR(' ');OUTTEXT(EL.UOM);

OUTIMAGE;
EL :- EL.NX;-.

FX - FX.SUC;

END ;
~END -- DUMP--

VARS:-NEW HEAD;
END ** FACTORX

Figure B-61

x. Class ENGRCAP.

i. Purpose. Determining engineer capability in SEAC is relatively
straightforward. The manhours associated with engineer units in a particular
place are added together (after some modification) to determine the total
capability. The source of those manhours is the engineer capability tree
(ECAPTREE), which has a list of valid engineer units identified by (i.e. with
search key) UTC. Objects from CLASS ENGRCAP are the nodal entries in the tree U
that contain that information.

ii. Class ENGRCAP Skeleton.

Parameters and Attributes for Class ENGRCAP.

CLASS: ENGRCAP j PREFIX: NODE

PARAMETERS:
EUTC text unit type code (engineer unit only)l

NATION integer designates nationality %
SERVICE integer designates service %
HRZ real horizontal manhours %
VRT real vertical manhours I
OTH real other manhours

" STRENGTH real nominal strength of unit

%S

I VARIABLE ATTRIBUTES: none

--- I
PROCEDURE ATTRIBUTES:

TEST integer
DUMP prints unit data

Figure B-62

N

B-67

N N-

:N

iii. Listing.

Listing of Class ENGRCAP. S

NODE CLASS ENGRCAP(EUTC,NATION,SERVICE,STRENGTH,HRZ,VRT,OTH);
VALUE EUTC;TEXT EUTC;INTEGER NATION,SERVICE;
REAL HRZ,VRT,OTH,STRENGTH;
BEGIN

INTEGER PROCEDURE TEST(T);REF(ENGRCAP)T;

TEST :- IF EUTC < T.EUTC THEN -I
ELSE IF EUTC > T.EUTC THEN I ELSE 0; -

PROCEDURE DUMP; :±v
BEGIN

SETPOS(IO); ,'
OUTTEXT(EUTC);OUTFIX(STRENGTH,0,5); N
OUTINT(NATION,2);OUTINT(SERIWCE,2);
OUTFIX(HRZ,2,10);OUTFIX(VRT,2,10);OUTFIX(OTH,2,10);

OUTIMAGE;
END -- DUMP--;

END ** ENGRCAP **;

Figure B-63

y. Class UNOFMS. •

i. Purpose. With hundreds of different facilities and factor entries .
indicating the size or amount of particular facilities it is clear that some
attention must be paid to measurement units to assure consistency. When a "
requirement is given in miles and the facility components are in feet, objects
from this CLASS are checked to see if a conversion can be made. In addition to
consistency, these objects are also used in war damage calculations. If
facility components are measured in production terms (e.g., kilo-volts), it is
necessary to translate this value into a dimensional value used in the target
damage logic. Getting equivalent translations is certainly not exact, but an
estimate is necessary to permit damage calculaitons.

ii. Class UNOFMS Skeleton.

.1k

B-68

.~,,~ - ,,*~**~ ~* * - ~ -qt ;% ' ~, %

Parameters and Attributes for Class UNOFWS.

CLASS: UNOFMS PREFIX: NODE 0

K PARAMETERS: h7

UOM text unit of measure (e.g., sf, mi) .
I EQVMS text equivalent unit of measure
COEF real conversion factor from UOM to EQVMSI
DAMCRIT text default damage criteria e.g., EMDA I

VARIABLE ATTRIBUTES: none

--
PROCEDURE ATTRIBUTES:
TEST integer

DUMP prints entry information

Figure B-64

iii. Listing.

Listing of Class UNOFMS.

NODE CLASS UNOFMS(UOM, EQVMS, COEF, DAMCRIT);
VALUE UOM,EQVMS,DAMCRIT;TEXT UOM,EQVMS,DAMCRIT;REAL COEF;
BEGIN J

INTEGER PROCEDURE TEST(T);REF(UNOFMS)T;
TEST :- IF UOM < T.UOM THEN -1

ELSE IF UOM > T.UOM THEN 1 ELSE 0;

PROCEDURE DUMP;

BEGIN
0

SETPOS(lO);OUTTEXT(UOM); SETPOS(20);OUTTEXT(EQVMS);
SETPOS(30);OUTFIX(COEF,3,10); SETPOS(43);OUTTEXT(DAMCRIT);
OUTIMAGE;

K END -- DUMP--;
END ** UNOFMS **;

Figure B-65 ,

5, Z. Class COMPO.

i. Purpose. Within each CATCOD object is a list of service & nation
entries which have facilities identified by that JCS category code. These 0
COMPO objects can contain component information for initial and temporary
facility standards, or war damage repair requirements to repair temporary
failiti~s (see COMPONENT CLASSes). Manipulation of these standards or damage

B-69

components plays an important part in the model. The model currently will only
schedule new construction using initial standard facilities. If the user does
not include an initial COMPONENT the model interprets that as a policy decision
to build no new facilities of that component type.

ii. Class COMPO Skeleton. -,

Parameters and Attributes for Class COMPO.

CLASS: COMPO PREFIX: LINK . -'

PARAMETERS:

i NAT integer indicates nationality
I SVc integer indicates service

VARIABLE ATTRIBUTES:
INTL COMPONENT points to initial std component
TEMP COMPONENT points to temporary std component
WARPR COMPONENT points to damage repair component I

--
..PROCEDURE ATTRIBUTES: none. '

Figure B-66

iii. Listing.

Listing of Class COMPO.

LINK CLASS COMPO(NAT,SVC);

INTEGER NAT,SVC;
BEGIN
REF(COMPONENT)INTL,TEMP,WARPR;

END ** COMPO **;

Figure B-67

a. Class GEOLOC.

i. Purpose. Most references to locations in SEAC use the geograhical
location code (GEOLOC). They are the means to identify installations in the
theater. GEOLOCS are used pervasively in the model and it was therefore
necessary to have an efficient referencing scheme, to save computer time. An
AVL tree (see GEOTREE) was selected as the most convenient means to accomplish
this. Within each object is a list of the installations associated with that
GEOLOC, distinguished by service and country.

B-70

0,' :: , 0.......... . . . q'-

, 4.

ii. Class CEOLOC Skeleton.

Parameters and Attributes for Class CEOLOC.

I CLASS: GEOLOC I PREFIX: NODE 4'.

PARAMETERS:

I GEOLAB text designates the geographic location

code

VARIABLE ATTRIBUTES:

CELL MAPCELL points to the mapcell in which the

GEOLOC belongs

I SITES HEAD the set of installations in the 0

GEOLOC

--- O
IPROCEDURE ATTRIBUTES:
TEST integer compares GEOLABs for placement

DUMP prints out GEOLOG informatin j

Figure B-68

iii. Listing.

.1 %

B 7.1,

- .4-

,.%.

1'%

SB-71

Listing of Class GEOLOC. .

NODE CLASS GEOLOC(GEOLAB);
VALUE GEOLAB; TEXT GEOLAB;
BEGIN

REF(MAPCELL) CELL;
REF(HEAD)SITES;

INTEGER PROCEDURE TEST(T);REF(GEOLOC) T;
TEST :- IF GEOLAB < T.GEOLAB THEN -1

ELSE IF GEOLAB > T.GEOAB THEN I ELSE 0;

PROCEDURE DUMP;
BEGIN p
REF(INSTALLATION)S;
SETPOS(I0) ;OUTTEXT(GEOLAB);

S :- SITES.FIRST; %
WHILE S -/- NONE DO

BEGIN
SETPOS(20); OUTTEXT(S.INAME);OUTTEXT(" IS A ");
OUTTEXT(INSTLIS.SUB(1+4*(S.INDX-l),4)) ;OUTIMAGE;
S :- S.SUC;
END;

END -- DUMP--;

SITES :- NEW HEAD;
END ** GEOLOC **;

Figure B-69 .

b. Class GEOSUB.
i. Purpose. This CLASS was created to enable different GEOLOCs Lo be

grouped together and treated as a single installation. (It is somewhat
analogous to the base complexing done in the CESPG.) Objects of this type are -
identified when the GEOTREE is being built by having a "CMPX" entered in its
installation field, and then identifying what the parent GEOLOC will be for the
duration of the model's execution. 66.

ii. Class GEOSUB Skeleton.

A

B.-

B-72

,~ . ,,

S - = S . - - -.i -. . % %. -.. , --> - .

%;
Parameters and Attributes for Class GEOSUB.

J

I CLASS: GEOSUB I PREFIX: GEOLOC

, I PARAMETERS: #
MAINGEOLOC GEOLOC point to the GEOLOC that this .

GEOLOC is considered part of

VARIABLE ATTRIBUTES: none

PROCEDURE ATTRIBUTES:
DUMP prints out identity of this GEOLOC

and its parent GEOLOC

Figure B-70

iii. Listing.

Listing of Class GEOSUB.

GEOLOC CLASS GEOSUB(MAINGEOLOC);

REF(GEOLOC) MAINGEOLOC;
BEGIN
PROCEDURE DUMP;

BEGIN SETPOS(10);
OUTTEXT(GEOLAB);SETPOS(25);

OUTTEXT("SUBCOMPLEX OF GEOLOC ");
OUTTEXT(MAINGEOLOC.GEOLAB);OUTIMAGE;

END -- DUMP--;

SITES :- MAINGEOLOC.SITES;
CELL :- MAINGEOLOC.CELL;
END ** GEOSUB **;

Figure B-71

c. Class PROPERTY.

i. Purpose. Much of the model revolves around determining what
v facilities are at or required at installations. REALTYTREE instances at each

installation establish AVL trees that keep track of: how much of a facility is
on the installation; what amount of the facility is required according to
people, unit, equipment, etc. factors; and as a result of shortfalls what
amount of the facility is currently to be or is being built. The result might
is equivalent to maintaining a property book. PROPERTY objects are the nodes
in the tree structure, and correspond to individual category codes (not
FACILITY subCLASSes). Each day the installation is queried to check the status

B-73
p

of facility requirements. On d-Day, before deployment begins, a special
routine, INITIALIZE, is invoked. It compares the facility requirements at the %
installation (using only in-theater units) with the assets. An assumption
made, however, is that all H-hour requirements are met even there are no assets S
indicated on the ASSET file. After that all succeeding facility assessments
are done through routine ASSESS, which schedules new construction when
shortfalls occur.

ii. Class PROPERTY Skeleton.

Parameters and Attributes for Class PROPERTY.

I CLASS: PROPERTY PREFIX: NODE . -

I PARAMETERS: S
I CTCODE text the 4 character JCS catcode for

this property

VARIABLE ATTRIBUTES: -
I REQD real amount of facility category req'd
UNDERWAY real amount of facility category being j

built ,
ONHAND real amount of existing facilty catgory
CATPTR CATCOD points to reference cat code
CMP COMPO points to applicable COMPO object I

UNMS UNOFMS points to unit of meas being used

PROCEDURE ATTRIBUTES: I
TEST integer %
DUMP %,

XREF boolean finds CMP and UNMS for this object I
NEEDS increases amount of requirements I
SHOWS increase amount of onhand assets
INITIALIZE at day 0 a check is made to see if ,- '.

facility assets are adequate for I

in theater unit/base requirements.
If not onhand assets are increased..

ASSESS determines whether and which new -"

facilities are needed at the
installaiton

Figure B-72 *.

0% %

B-74

......

iii. Listing.

Listing of Class PROPERTY.

NODE CLASS PROPERTY(CTCODE);
VALUE CTCODE;TEXT CTCODE;

BEGIN
REAL REQD,UNDERWAY,ONHAND;
REF(CATGOD)CATPTR;REF(GOMPO)t4P ;REF(UNOFMS)UNMS;

INTEGER PROCEDURE TEST(R) ;REF(PROPERTY)R;
TEST :-IF CTCODE < R.CTCODE THEN -1

ELSE IF CTCODE > R.CTGODE THEN 1 ELSE 0;

PROCEDURE DUMP;
BEGIN
SETPOS(lO); OUTTEXT(CTCODE);
OUTFIX(REQD,l,20); OUTFIX(ONHAND,1,lO); OUTFIX(UNDERWAY,1,1O);
OUTIMAGE;
END;

BOOLEAN PROCEDURE XREF(INSTL); REF(INSTALLATION)INSTL; .

BEGIN
IF CATPTR -- NONE THEN

BEGIN
OUTTEXT("... .PROP/XREF. .MISSING CATGOD ");OUTTEXT(CTGODE);
OUTIMAGE;

END
ELSE
BEGIN
GMP: -CATPTR.SELECT(INSTL.COUN, INSTL.SRVC);
IF CMP -- NONE AND INSTL.COUN <> XUS THEN

CMP: -CATPTR.SELECT(XUS, INSTL.SRVC);
IF CMP - NONE THEN

BEGIN
OUTTEXT(". ...PROP/XREF. .MISSING COMPO. .");OUTTEXT(GTCODE);
OUTIMAGE;
END
ELSE
IF CMP.TEMP =/- NONE THEN

BEGIN UNMS :- CMP.TEMP.UOM; XREF TRUE; END
ELSE
IF GMP.INTL '-/- NONE THEN

BEGIN UNMS :- CMP.INTL.UOM; XREF TRUE; END;
END;

END -- XREF--

PROCEDURE NEEDS(AMT,UM); REAL AMT; TEXT UM; 6

IF UM - UNMS.UOM THEN REQD :=REQD + ANT
ELSE
IF UM - UNMS.EQVMS THEN REQD REQD +UNMS.COEF*AMT

ELSE
BEGIN%

B-75

OUTTEXT(... PROP/NEEDS. .UOM MISMATCH. .");OUTTEXT(GTCODE);
OUTCHAR('- ') ;OUTTEXT(UM);
OUTIMAGE;
END;

PROCEDURE SHOtJS(AMT,UM); REAL AMT; TEXT UM;
IF UM - UNMS.UOM THEN ONHAND :-ONHAND + AMT

ELSE
IF UM - UNMS.EQVMS THEN ONRAND :- ONHAND + UNMS.COEF*AMT

ELSE
BEGIN
OUTTEXT(. ... PROP/ASSETS. .UOM MISMATCH..") ;OUTTEXT(CTCODE);
OUTCHAR('- ') ;OUTTEXT(UM);-
OUTIMAGE;.1 '

END;

PROCEDURE INITIALIZE(INSTL) ;REF(INSTALLATION)INSTL; -
BEGIN REF(COMPONENT) CMPNT;CHARACTER STD;REF(FACILITY) F;REAL STRT,SZ; -

IF LL-/=NONE THEN LL QUA PROPERTY.INITIALIZE(INSTL);
IF REQD < ONHAND THEN STRT:= ONHAND

ELSE STRT :=ONHAND :=REQD;
IF STRT > 0.0 THEN

BEGIN
IF -- P.TEMP =/- NONE THEN

BEGIN CMPNT: -CMP.TEMP; STD:=XTSTD;END
ELSE IF CMP.INTL =/- NONE THEN

BEGIN CMPNT: -CMP. INTL;STD:-XISTD;END;
IF CMPNT -~/- NONE THEN

BEGIN
IF CMPNT.PART - XFRAC THEN

BEGIN
F :- CATOFAG(THIS PROPERTY,CMP,STRT,GTCODE,STD);
IF F -/- NONE THEN

BEGIN INSTL.GETS(F,CTCODE); F.BUILT:=TRUE;END;
END
ELSE

IF CMPNT.PART = XWI{L THEN .,

BEGINa
SZ:=IF STRT > CMPNT.SIZE THEN CMPNT.SIZE

ELSE STRT; t

F :-CATOFAC(THIS PROPERTY,CMP,SZ,CTCODE,STD);
IF F -/= NONE THEN a

BEGINa

STRT :-STRT - SZ;
INSTL. GETS (F, CTGODE);
F.BUILT :- TRUE; -

WHILE STRT > 0.0 DOr
BEGIN

IF SZ > STRT THEN SZ STRT;
F :- CATOFAC(THIS PROPERTY,CMP,

SZ,CTCODE,STD); -

INSTL. GETS(F, CTCODE);
F.BUILT TRUE; -

B- 76

7" -.-7 TVZ-77-

STRT :=STRT -SZ;

END;
END;

END
ELSE
BEGIN
OUTTEXT(... .PROP/INIT. .PARTITIONING NOT

KNOWN..");
OUTTEXT(GTGODE); OUTIMAGE;
END;

END
ELSE
BEGIN T

OUTTEXT(... PROP/INIT. .CONSTRUCTION STD NOT KNOWN..");
OUTTEXT(CTCODE); OUTIMAGE;
END;

END;
IF RL-/-NONE THEN RL QUA PROPERTY.INITIALIZE(INSTL);
END - - INITIALIZE

PROCEDURE ASSESS(INSTL) ;REF(INSTALLATION)INSTL;
BEGIN REF(GOMPONENT) CMPNT;CHARACTER STD;REF(FACILITY) F;
REAL SHORTAGE,MULT;
IF LL-/-NONE THEN LL QUA PROPERTY.ASSESS(INSTL);
SHORTAGE :-REQD -(ONHAND+UNDERWAY);
IF SHORTAGE > 0.0 THEN

BEGIN 1

IF CMP.INTL -/- NONE THEN
BEGIN
GMPNT: -CMP. INTL; STD:=.XISTD;
IF UNMS.UOM - GMPNT.UOM.UOM THEN MULT :=1.0

ELSE
IF UNMS.EQVMS - GMPNT.UOM.UOM THEN

BEGIN
SHORTAGE: =UNMS .COEF*SHORTAGE;
MULT :- I/UNMS.GOEF;0
END
ELSE l

END; GMPNT :- NONE;

IF GMPNT ==NONE THEN
BEGIN
IF CMPNT.PART - XFRAC THEN

0. BEGIN
F : - CATOFAG(THIS PROPERTY, CMP,SHORTAGE,CTCODE, STD);
IF F -/- NONE THEN

BEGIN -

F. CONSTR(INSTL. GOUN, INSTL. SRVG,
INSTL. INDX, INSTL.JOBS);

UNDERWAY :- UNDERWAY + SHORTAGE*IJLT;
INSTL.GETS(F,CTGODE);
END;

ENDNM
ELSE

B-77

S C .' - - - f C~t- -A.

IF CMPNT.PART - XWHL THEN

BEGIN
WHILE SHORTAGE >- CMPNT.SIZE DO

BEGIN
F :-CATOFAC(THIS PROPERTY,CMP,

CMPNT.SIZE,CTCODE,STD);
F.CONSTR(INSTL.COUN,INSTL.SRVC,

INSTL.INDX,INSTL.JOBS);
SHORTAGE:-SHORTAGE-CMPNT.SIZE;
UNDERWAY :-UNDERWAY + GHPNT.SIZE*MJLT;
INSTL.GETS(F,CTCODE);

END;
END
ELSE
BEGIN
OUTTEXT(" PROP/ASSESS..PARTITION

ERROR..");
OUTTEXT(CTCODE);
OUTIMAGE;
END;

END
ELSE
BEGIN
OUTTEXT(" PROP/ASSESS. .NO COMPONENT (UOM/STD)..");
OUTTEXT(CTCODE); OUTIMAGE;
END;

END;
IF RL-/-NONE THEN RL QUA PROPERTY.ASSESS(INSTL);
END -- ASSESS--;

.P

CATPTR :- CATAB.FIND(CTCODE);
END ** PROPERTY **;

Figure B-73

d. Class ENGRUNIT. .' "

i. Purpose. Engineer capability in SEAC is a direct measure of the
manhours provided by the various enginer units that operate in the theater. .

ENGRUNIT objects represent these engineer units. Each day at every . -5

installation and in every region where there are engineer units (see ENGRPOOL),

SEAC evaluates the effective capability of the assigned units and adds it to a

local pool of available engineer horizontal, vertical, and other manhours. The .

calculation is performed daily in case there have been changes in unit location
or effectiveness. This addresses both the phase in period where units are

arriving in theater, and a general availability factor that wraps up travel,

sickness, and casualties. Presently SEAC does not explicitly calculate -.

casualty losses (although the structure of SEAC could easily be adapted to do " .

so). One of the strengths of the model is its ability to explicitly manipulate
engineer units. This provides an internal double check against moving units
that don't exist, complements the detailed theater representation and also -

provides an opportunity to consider service and skill distinctions that might

otherwise be impossible. (Some of the advantages are admittedly prospective,

B-78

but, since SEAC envisions future extensions, within the objectives of the

model's design.)

ii. Class ENGRUNIT Skeleton.

Parameters and Attributes for Class ENGRUNIT.

CLASS: ENGRUNIT PREFIX: LINK

I PARAMETERS:
UTCMSTR ENGRCAP points to ECAPB file reference UTC I

I STRENGTH real manpower strength from TPFDD I
TIMTHT real day unit arrives in theater

II

VARIABLE ATTRIBUTES:
HCAP real horizontal hours for UTCMSTR I
VCAP real vertical It It

OCAP real other it . .

ADJUTC real adjusts capability based on: -

time in theater, strength, and
general availability. I

--- I
PROCEDURE ATTRIBUTES:

I MUSTER makes daily assessment of capabil- -

ity of unit and adds hours to
pool.

Figure B-74

iii. Listing.

.--

,o-"

, B-79

. . . .% %i • - -. - I I I.-' .a- I * *-

IMCM IL- IU X

Listing of Class ENCRUNIT,

LINK CLASS ENGRUNIT(UTCMSTR,STRENGTH,TIMTHT);
REF(ENGRCAP)UTCMSTR;REAL STRENGTH,TIMTHT;
BEGIN
REAL HCAP,VCAP,OCAP,ADJUTC;

PROCEDURE HUSTER(H,V,O,DRP,S); NAME H,V,O,S; REAL H,V,O,S;BOOLEAN DRP;

BEGIN
ADJUTC:-IF TIME < TIMTHT + 9 THEN

ENGBLDUP(UTCMSTR.NATION,ENTIER(TIME)-TIMTHT) *
ENGRAVL(UTCMSTR.NATION)

ELSE A
ENGRAVL(UTCMSTR.NATION);

H H + HCAP*ADJUTC; V :- V + VCAP*ADJUTC; 0 :- 0 + OCAP*ADJUTC;
S S + ADJUTC * (HCAP + VCAP + OCAP);
IF DRP THEN
BEGIN SETPOS(53);OUTFIX(HCAP,1,8);OUTFIX(VCAP,I,8);

OUTFIX(OCAP,I,8);OUTFIX(ADJUTC,3,7);OUTCHAR(' ');
OUTTEXT(UTCMSTR.EUTC); OUTIMAGE;

END;

END -- MUSTER--;

I ROOM IS LEFT FOR CASUALTY, MOPP, AND SKILL SUBSTITUTION DATA AND CODE;

BEGIN
IF TIMTHT < 0.0 THEN TIMTHT :- -10.0;
ADJUTC :- STRENGTH / UTCMSTR.STRENGTH;
HCAP ADJUTC * UTCMSTR.HRZ;

VCAP ADJUTC * UTCMSTR.VRT;
OCAP ADJUTC * UTCMSTR.OTH;
END;

END ** ENGRUNIT **;

Figure B-75
H.

e. Class ORDNANCE.

i. Purpose. This is the general CLASS under which all ordnance used
to arm enemy units or planes must be defined. It is left to ORDNANCE H

subCLASSes to provide specific details.

ii. Class ORDNANCE Skeleton. "-

S°

H-

B-80

* PH%

K

Parameters and Attributes for Class ORDNANCE,

I CLASS: ORDNANCE] PREFIX: LINK 0

I PARAMETERS:
I ORDID text the name of the ordnanceI I

I VARIABLE ATTRIBUTES: none

--
PROCEDURE ATTRIBUTES: none k

• I .

Figure B-76

iii. Listing.

Listing of Class ORDNANCE.

LINK CLASS ORDNANCE(ORDID); VALUE ORDID;TEXT ORDID;

Figure B-77

f. Class BOMB. S

i. Purpose. This ORDNANCE subCLASS is used to represent the essential
characterisitics of enemy air delivered bombs. (Presently only
dumb" bombs are used.) Two attributes give radii of fragmentation and blast 0

damage for the bomb. Calculating accurate bomb damage to primary and
collateral targets is complicated and requires a level of representaional
detail inappropriate to that used in SEAC. SEAC attempts to generate a
representative damage estimate that considers the threat, the ordnance, the
installation target, and the interplay of facility and ordnance. (The current
form of SEAC damage calculation was largely determined by form of data suppliedW

by PACAF for the Korean theater.) Since most targets are buildings, damage is
usually proportional to the square feet of either blast or fragmentation
damage. Bombs dropped on runways, buildings, POL tanks , etc., invoke special
damage calcualtion routines.

ii. Class Skeleton. 0

r- B-81

if.

Parameters and Attributes for Class BOMB,

I CLASS: BOMB I PREFIX: ORDNANCE .

PARAMETERS:
RFRAG real fragmention radius against initial I

standard facilityI
RBLST real blast radius against temporary

standard facility z

DUDRATE real bomb reliability

VARIABLE ATTRIBUTES: none ,

--

PROCEDURE ATTRIBUTES:
EFFECT real selects the appropriate radius

Figure B-78

iii. Listing.

Listing of Class BOMB,

ORDNANCE CLASS BOMB(RFRAG,RBLST,DUDRATE);.:
REAL RFRAG,RBLST,DUDRATE; '
BEGIN

REAL PROCEDURE EFFECT(TYPSTD); CHARACTER TYPSTD;
EFFECT :- IF TYPSTD - XISTD THEN RFRAG

ELSE IF TYPSTD - XTSTD THEN RBLST
ELSE 0.0;

END ** BOMBS **;

Figure B-79

g. Class ROCKET.

i. Purpose. ROCKET is an ordanace subCLASS used to represent the
effects of unguided rockets. In the initial version of SEAC, damage is not
calculated for rocket attacks because of the limited capability of 57mm rockets
to cause significant structural damage.

,\

B-82

% V -w

II

ii. Class ROCKET Skeleton.

Parameters and Attributes for Class ROCKET.

CIASS: ROCKET I PREFIX: CRTXNCE

PARAMETERS: I
I DUDRATE real rocket reliability factor I

I VARIABLE ATTRIBUTES: none

--'
PROCEDURE ATTRIBUTES: none

Figure B-80

iii. Listing.

Listing of Class ROCKET.

ORDNANCE CLASS ROCKET(DUDRATE);REAL DUDRATE;
D

Figure B-81

h. Class DEMOL.

i. Purpose. Ordnance from this CLASS is used to represent the
demolition ordnance or explosive material that insurgent or commando units
would carry to carry out sabotage in the COMMZ (see SPFUNIT). Attributes
represent material factors that were extracted from FM 5-25 for damage radii
against wood and masonry targets. Also included is an estimation of the amount
of debris that would have to be cleared from an attack on a tunnel that was
sabotaged. (FM 5-25 suggested the relative difficulty of causing major damage
to a tunnel, especially one that will probably be guarded.)

ii. Class DEMOL Skeleton.

B-83

zI

Parameters and Attributes for Class DEMOL.

CLASS: DEMOL PREFIX: ORDNANCE

I PARAMETERS:
I MTLFACTIM real material factor from FM 5-25 tor

breaching timber I
I MTLFACMAS real material factor from FM 5-25 for I

breaching good masonry I

VARIABLE ATTRIBUTES: none

--- I
PROCEDURE ATTRIBUTES: I
EFFECT real damage radius for demolition and

target interaction I
DEBRIS real calculates amount of debris (cubic

measure) from tunnel attack

Figure B-82

iii. Listing.

Listing of Class DEMOL

ORDNANCE CLASS DEMOL(MTLFACTIM,MTLFACMAS);

REAL MTLFACTIM,MTLFACMAS;
BEGIN r

REAL PROCEDURE EFFECT(TYPSTD,LBS); CHARACTER TYPSTD;REAL LBS;
BEGIN IFORMULA ADAPTED FROM FM 5-25,SEC-V,BREACH RADII;
IRADIUS := CUBE ROOT OF LBS TNT/(MATL FAC * TAMP FAC); .
EFFECT := EXP(.33 * LN(LBS)-

(LN(IF TYPSTD = XISTD THEN MTLFACTIM ELSE MTLFACMAS)
+ LN(3.6))));

END -- EFFECT --;

REAL PROCEDURE DEBRIS(LBSEX);REAL LBSEX;

ITHIS IS ALSO AN ADAPTATION FROM FM 5-25
WHERE MATERIAL FAC = .27 (ROCK >> 7 FT) &

TAMPING FAC = 1.8;
DEBRIS:=(2/3)*PI*LBSEX/(.27*1.8);

END ** DEMOL **-,

Figure B-83

i. Class AIRCRAFT.

B-84

i. Purpose. This CLASS is used to define the types of aircraft that

the enemy will use to attack the COMMZ. (Originally calculations were intended
to actually calculate time to and from target to measure turn around capacity.
The uncertainties of routes and level of attack caused this feature to be
dropped and enemy planes were assumed to be capable of meeting misssion
schedules found in intelligence estimates.)

ii. Class AIRCRAFT Skeleton.

Parameters and Attributes for Class AIRCRAFT.

CLASS: AIRCRAFT PREFIX: LINK -

PARAMETERS:

I ID text identification label of plane type I-
I RANGE real range (not used)
I SPEED real speed (not used)

I VARIABLE ATTRIBUTES:
I PAYLOAD HEAD ordnance that planes of this type •.

are configured to carry .
PID integer identifies plane as fighter or

I fighter/bomber

--
I PROCEDURE ATTRIBUTES: none

Figure B-84

iii. Listing.

Listing of Class AIRCRAFT,.t

LINK CLASS AIRCRAFT(ID,RANGE,SPEED);
VALUE ID; TEXT ID; REAL RANGE,SPEED;
BEGIN REF(HEAD)PAYLOAD;INTEGER PID; PAYLOAD:-NEW HEAD;END;

Figure B-85

j. Class MUNITION. 0

i. Purpor. Objects from this CLASS are placed in the PAYLOAD set in '.

AIRCRAFT objects to define the ordnance that is being carried by that plane X
type.

B-85

lip#..'
-

" -85

ii. Class MUNITION Skeleton.

Parameters and Attributes for Class MUNITION.

CLASS: MUNITION 1 PREFIX: LINK I

I PARAMETERS: ft"

I TYPORD ORDNANCE points to the ordnance type I
I NUMBER real indicates how many are carried I

I VARIABLE ATTRIBUTES: none

PROCEDURE ATTRIBUTES: none I

Figure B-86

iii. Listing.

Listing of Class MUNITION.

LINK CLASS MUNITION(TYPORD,NUMBER);
REF(ORDNANCE)TYPORD;REAL NUMBER;

Figure B-87 ,"

k. Class PLANE.

i. Purpose. SEAC models enemy air attacks through explicit
representation of enemy threat assets. A PLANE object is created for every
plane in the enemy's order of battle that can deliver munitions against COMMZ '

installations. PLANEs carry the MUNITIONs that are dropped (fired) at FACILITY
targets that result in facility damage. This combination of objects from .

different CLASSes is handled in the internal PLANE procedure ATTACK. Actually ,-. -,
PLANE objects are grouped together to attack various targets by the mission -"

generation process (see PROCESS MISGEN).

ii. Class PLANE Skeleton.

5'

B-86

, ---

Parameters and Attributes for Class PLANE. %0

ICLASS: PLANE IPREFIX: LINK

[PARAMETERS: .
TYPE AIRCRAFT identifies the type of aircraft

I _ _I__

VARIABLE ATTRIBUTES: a

FACTGT FACILITY the selected target
I DROP integer amount of ordnance dropped / pass I
I AIMPOINT integer index of target set
I KEPAIRTIME real time when rlane will be repaired
I AMMO real size of ordnance load
I MUN MUNITION points to (each) ordnance type

being carried A
N

--- 6-
I-PROCEDURE ATTRIBUTES:

I ATTACK this routine plays the attack of thel
plane against a target

Figure B-88

iii. Listing. ;NS

LsListing- of Class PLANE.

LINK CLASS PLANE (TYPE);
REF(AIRCRAFT) TYPE;
BEGIN
REF(FACILITY) FACTGT; INTEGER DROP,AIMPOINT;
REAL REPAIRTIME,AMMO;REF(MUNITION)MUN;

PROCEDURE ATTACK(TGTSITE); REF(INSTALLATION)TGTSITE;
BEGIN
TGTSITE.SORTIESRECVD :- TGTSITE.SORTIESRECVD + i;
MUN:-TYPE.PAYLOAD.FIRST;
IF ATKLOG THEN

BEGIN OUTTEXT(".. ----.. ");OUTTEXT(TYPE.ID);OUTINT(AIMPOINT,4);
OUTCHAR(' ');OUTTEXT(TGTSITE.INAME);OUTCHAR('-');
END;

WHILE MUN -/- NONE DO
BEGIN
AMMO :- MUN.NUMBER;
IF MUN.TYPORD IS ROCKET THEN

TGTSITE.ROCHITS :- TGTSITE.ROCHITS + AMMO S
ELSE
IF HUN.TYPORD IS BOMB THENe

B-87

WHILE AMMO > 0 DO
BEGIN
DROP IF AMMO < RELRATE THEN AMMO ELSE RELRATE;

AMMO AMMO - DROP;
FACTGT :- TGTSITE.TGTSELECT(AIMPOINT);
IF FACTGT '-/- NONE THEN
BEGIN
IF ATKLOG THEN OUTTEXT(FAGTGT. PRP. CTCODE);
IF DRAW(FAGHIT(AIMPOINT) ,UFHIT) THEN

FACTGT.DAMAGE(MUN.TYPORD,DROP,TGTSITE.DAMLIST)
ELSE
IF AIMPOINT - 7 THEN

BEGIN
IF DRAW(FACHIT(6),UFHIT) THEN

BEGIN
FACTGT :-TGTSITE.TGTSELEGT(6);
IF FACTGT IN SURFACE THEN

FAGTGT.DAMAGE(MUN.TYPORD,DROP,TGTSITE.DAMLIST); z
END;

END
ELSE
IF DRAVI(FACHIT(4),UFHIT) THEN

BEGIN -

FACTGT :-TGTSITE.TGTSELECT(4);
IF FAGTGT IN TRANSPO THEN

FAGTGT.DAMAGE(M4UN.TYPORD,DROP,TGTSITE.DAMLIST);

END
ELSE -

IF TGTSITE IS AIRBASE THEN
BEGIN
IF DRAW(FAGHIT(9),UFHIT) THEN

BEGIN
FAGTGT :-TGTSITE.TGTSELECT(5);
IF FACTGT IN UTILITY THEN

FAGTGT .DAMAGE(MUN .TYPORD, .

END DROP,TGTSITE.DAMLIST);
END.

ELSE
IF DRAW(FAGHIT(9),UFHIT) THEN

BEGIN.
FAGTGT: -TGTSITE.TGTSELECT(9); -

IF FAGTGT IN UTILITY THEN
FAGTGT. DAMAGE (HUN. TYPORD,

DROP,TGTSITE.DAMLIST);
END;.

END;

ELSE Ile,

IF DRAW(FACHIT(5),UFHIT) THEN .v

BEGIN

FACTGT :- TGTSITE.TGTSELEGT(5);
IF FAGTGT IN UTILITY THEN

FAGTGT. DAMAGE (1UN. TYPORD,
DROP,TGTSITE.DAMiLIST);

END;

B-88

. %.

END;
END;

MUN MUN.SUC;
IF ATKLOG THEN OUTIMAGE;
END;

%

END -- ATTACK -- ;

END ** PLANE **;

Figure B-89

1. Class NKAIRBASE.

i. Purpose. As part of the play of threat air attacks, SEAC can keep
track of the planes that are found at different enemy airfields. Planes are
placed into four different categories: fighters, bombers, those being
repaired, and those that are not operational (but not because of war damage).
Whenever the mission generation process calls for a new attack from an airbase

40- SEAC checks to see which planes are available from those that have been
repaired and those that are declared operationally ready. (NB: the importance
of this CLASS is somewhat less than originally conceived for two reasons. 0

Damage to enemy bases that would destroy planes on the ground or deny use of
the base is not played. And the location of the base relative to the target is
also waived as a constraint. The latter is the reason why the range and speed
attributes of PLANE are not used in SEAC. A different scenario might require
that consideration of damage and enemy airbase capacity be taken into account.) '

NO

ii. Class NKAIRBASE Skeleton.

"S

e.

B-,89

,. B-89 ,

iS

W' TN . _V1 -. -X 7)" - P

Parameters and Attributes for Class NKAIRBASE. ..

CLASS: NKAIRBASE I PREFIX: LINK I

I PARAMETERS:
ID text name of the airbase

IVARIABLE ATTRIBUTES:
BOMBERS HEAD set of BMBR plane objects
FIGHTERS HEAD set of FTR plane objects .

REPAIR HEAD PLANEs in for repair .

NOTRDY HEAD PLANEs found not operationally
ready

--- I
..PROCEDURE ATTRIBUTES:
PREPARE determines which planes have been

repaired, and which ones are ".

operationally ready and available I
for attacks

"A''

Figure B-90

iii. Listing.

Listing of Class NKAIRBASE.

LINK CLASS NKAIRBASE(ID);
VALUE ID;TEXT ID;

BEGIN
REF(HEAD)BOMBERS,FIGHTERS,REPAIR,NOTRDY; ,

PROCEDURE PREPARE(OPRDY); REAL OPRDY;
BEGIN
REF(PLANE)PL,TEMP;
INTEGER NB,NF,NOB,NOF,NR;

FOR PL :- NOTRDY.FIRST WHILE PL =/= NONE DO -
IF PL.TYPE IS BMBR THEN PL.INTO(BOMBERS)

ELSE PL.INTO(FIGHTERS);

PL :- REPAIR.FIRST;
WHILE PL =/= NONE DO

IF PL.REPAIRTIME LE TIME THEN .

BEGIN
TEMP :- PL.SUC;
IF PL.TYPE IS BMBR THEN

PL.INTO(BOMBERS)

ELSE
P.INTO(FIGHTERS); '

B-90

PL :-TEMP;

END
ELSE
BEGIN NR :-NR +l;PL PL.SUG;END;

PL BOMBERS.FIRST;

FRA WHILE PL -/- NONE DO
IF DRAtJ(OPRDY,URDY) THEN

BEGIN NB:-NB+l;PL:-PL.SUC;END
ELSE
BEGIN

TEMP :- PL.SUC; PL.INTO(NOTRDY);
NOB:-NOB+1;PL: -TEMP;
END;

PL :- FIGHTERS.FIRST;
WHILE FL -/- NONE DO

IF DRAW(OPRDY,URDY) THEN

BEGIN NF:-NF+l;PL:-PL.SUC;END
ELSE
BEGIN
TEMP :-PL.SUC; PL.INTO(NOTRDY);
NOF:-NOF+1;PL: -TEMP;
END;

SETPOS(13) ;OUTTEXT(ID);
OUTINT(NB,7);OUTCHAR('/');OUTINT(NOB,4);
OUTINT(NF,5);OUTGHAR('/');OUTINT(NOF,4);
OUTINT(NR, 10) ;OUTIMAGE;
END ** PREP *

REPAIR NEW HEAD;
BOMBES NEWHEAD;
NOTRD NEWHEAD;

END **NAIRB*S

Figure B-91

41,

M. Class SPFUNIT.

i. Purpose. This CLASS is used to represent the enemy units or
groups that will be inserted into the rear and used against COMMZ targets. Just
as there is a PLANE object for each enemy aircraft, so there is an SPFUNIT
object for each enemy infiltrated unit. Unlike PLANE objects, however, SPFUNIT
objects are not recycled- -when a unit expends the ordnance it carries it is no
longer considered by SEAG.

ii. Class SPFUNIT Skeleton.

B-91

Parameters and Attributes for Class SPFUNIT. :

CLASS: SPFUNIT PREFIX: LINK

PARAMETERS: I
I TORG TEAMORG the type of the unit I
I LOCALE MAPCELL where the unit is I

I VARIABLE ATTRIBUTES: none I

--- I
I PROCEDURE ATTRIBUTES: none "

Figure B-92

iii. Listing.

Listing of Class SPFUNIT.

LINK CLASS SPFUNIT(TORG,LOCALE);REF(MAPCELL)LOCALE;REF(TEAMORG)TORG;

Figure B-93 ,*

n. Class TEAMORG.

i. Purpose. The ground threat is defined in terms of number and
placement of enemy units in the COMMZ. The model is only interested in
calculating the damage that these units can cause and what that translates into
in terms of engineer requirements. Therefore SEAC is only interested in how
much demolition materiel that the unit carries; what the unit does to kill '* .

troops and disrupt rear opearations is not within the scope of the model.
TEAMORG objects define the types of teams that will be inseted into the COMMZ.
(TEAMORG is to SPFUNIT what AIRCRAFT is to PLANE.) *.

ii. Class TEAMORG Skeleton.

%,

B-92 A. I

Parameters and Attributes for Class TEAMORG.

CLASS: TEAMORG I PREFIX: LINK

SPARAMETERS:

TID text identification label of threat :
J team/organization

I VARIABLE ATTRIBUTES:
ARMS HEAD list of ordnance and amounts that

team carries that can damage I
facilities I

--

1" (PROCEDURE ATTRIBUTES:
SABOTAGE boolean attacks MSR & LOC facilities
ATK carries out attacks against 'soft' 01

targets (buildings,utilities) on
an installation

A. 1%

Figure B-94

iii. Listing. •

Listing of Class TEAMORG

LINK CLASS TEAMORG(TID);VALUE TID; TEXT TID;
BEGIN S

-Z, REF(HEAD)ARMS;

PROCEDURE ATK(INSTL);REF(INSTALLATION)INSTL;
BEGIN
REF(FACILITY)FACTGT;REF(MUNITION)M;REAL DEMLBSCHRG;
IF ATKLOG THEN BEGIN OUTTEXT(INSTL.INAME);OUTCHAR(' ');END;

INSTL.RGATK :- INSTL.RGATK + 1;
M :- ARMS.FIRST;
WHILE M =/=- NONE DO

I F 1.BEGIN
IF M.TYPORD IS DEMOL THEN

BEGIN

DEMLBS := M.NUMBER;
WHILE DEMLBS > 0 DO

BEGIN
CHRG:=IF LBSTGT<DEMLBS THEN LBSTGT ELSE DEMLBS;

'A FACTGT:-RANDPICK(INSTL.FBLDG);
IF FACTGT =/- NONE THEN S

BEGIN
IF ATKLOG THEN OUTTEXT(FACTGT.PRP.CTCODE); '

V V'w------------------------3

FAGTGT. DAMAGE(M. TYPORD, CHRG, INSTL. DAMLIST);
DEMLBS:=DEMLBS -CHRG;
CHRG:-IF LBSTGT<DEMLBS THEN LBSTGT

ELSE DEMLBS;
END;

FACTGT:-IF DEMLBS > 0 THEN RANDPICK(INSTL.FUTIL)
ELSE NONE;

IF FACTOT -/- NONE THEN
BEGIN
IF ATKLOG THEN OUTTEXT(FACTGT.PRP.CTCODE);
FAGTGT.DAMAGE(M.TYPORD,CHRG,INSTL.DAMLIST);
DEMLBS :-DEMLBS-CHRG;

END;
IF DEMLBS - M.NUMBER THEN DEMLBS 0;

EN;END;

M M.SUC;
END;

E TD - -ATK- -;

BOOLEAN PROCEDURE SABOTAGE(MC) ;REF(MAPGELL)MC;
BEGIN
REF(FACILITY)MSRTGT ;REF(MIJNITION)M;
IF ATKLOG THEN OUTTEXT("l MAPGELL ");
MSRTGT :- IF MC.PIPELINE-/-NONE THEN RANDPIGK(MC.PIPELINE)

ELSE IF MC.RRS-/-NONE THEN RANDPICK(MC.RRS)
ELSE IF MG.ROADS-/-NONE THEN RANDPICK(MG.ROADS)

ELSE NONE;
IF MSRTGT - NONE THEN SABOTAGE:-FALSE

ELSE J*'

BEGIN
M :-ARMS.FIRST;
WHILE M -/- NONE DO

BEGIN
IF M.TYPORD IS DEMOL THEN

MSRTGT.DAMAGE(M.TYPORD,M.NUMBER,MC.DMGLIST);
M :- M.SUC;

END;
SABOTAGE TRUE;
END;

END --SABO--;

ARMS:-NEJ HEAD;
END **TEAMORG

Figure B-95

B-94

v

o. Class FACILITY.

i. Purpose. The prefix CLASS FACILITY defines the basic data and

procedural attributes for all the different facilities categories represented 0

in SEAC. Requirements are expressed in terms of amount of needed facilities.
Needed facilities are then translated into work tasks which can be performed by
available engineer units. FACILITY objects can also be damaged by enemy air or
ground attacks. (Maintenance requirements would be easy to generate but have

not been in this implementation.) It is important to note that FACILITY is
used as a prefix to the five subCLASSes: BUILDINC, SURFACE, PETRO, UTILITIES,
and TRANSPO. These in turn are used as prefixes to the actual CLASSes for
which objects are generated. (This structural hierarchy used to represent
facilites in SEAC requires an understanding of the SIMULA CLASS. ANNEX A
introduces this and other special features of SIMULA, and references are also
given there for more in depth discussions of SIMULA.)

ii. Class Skeleton.

a.,.

%

B-95

II

Parameters and Attributes for Class FACILITY 'a

{ CLASS: FACILITY f PREFIX: LINK

PARAMETERS:
SIZE real size of the facility
PRP PROPERTY points to PROPERTY entry for this

facility category
CMPO COMPO points to F
STD character 'I' - initial, 'T' - temporary ,

VIRTUAL:
DAMAGE calculates how damage is to be

assessed against the type of ,
facility (default is BUILDING) I

REPAIR determines what the damage means
in terms of repair hours and
whether a TASK must be created

VARIABLE ATTRIBUTES:
WRKTSK TASK points to worktask associated with I

constructing this FACILITY I
UMPNT COMPONENT points to the COMPONENT used for ,

this object I
DAMREP HITS points to the object which accumu-

lates damage against the FACILITY I
DMGRT real fraction of FACILITY damaged
FACINDX integer indexes FACILITY-sub-sub-CLASSes
BUILT boolean 'true' if building is constructed I

-- ---
PROCEDURE ATTRIBUTES:
ERROR error message routine ,
CONSTR generates the TASK that enters a

construction project

DAMAGE see VIRTUAL section I
FINISHED this is called when construction

is completed
MAINTENANCE n/a
SELRPRCMP COMPONENT how repair time is estimated is a

function of construction standard -

and whether a damage component
has been included in COMPO "

CKUOM boolean makes sure 'units' match or are
accounted for by conversion

p - -- -- - --- ----- -------- ----=-==-----=---=- =--=== = -- -- - --- =

Figure B-96

B-96

iii. Listing.

Listing of Class FACILITY

LINK CLASS FACILITY(SIZE,PRP,CMPO,STD);.%
REF(PROPERTY) PRP ;REAL SIZE; REF(COMPO)CMPO; CHARACTER STD;
VIRTUAL :PROCEDURE DAMAGE,REPAIR;
BEGIN
REF(TASK)WRKTSK; REF(COMPONENT)C4PNT; REF(HITS)DAMREP;
REAL DMGRT; INTEGER FACINDX; BOOLEAN BUILT;

PROCEDURE ERROR(Tl,T2);TEXT Tl,T2;
BEGIN SETPOS(1O);
OUTTEXT(".. .FACILITY ERROR...");
OUTTEXT(T1) ;OUTTEXT(T2);
OUTIMAGE;
END - -ERROR --

PROCEDURE CONSTR(NAT, SRVC, LOGX,JOBQ);
REF(HEAD)JOBQ; INTEGER NAT, LOCX, SRVC;

~BEGIN
REF(POLICY) PRIO;REAL !KULT;
PRIO :- RATE(NAT, 'C',LOCX,FACINDX);
IF PRIO -/- NONE THEN

BEGIN
MULT :-PRIO.SHARE*SIZE/CMPNT.SIZE;
WRKTSK :- NEW TASK(PRIO.PRIOGRP ,NAT, SRVC ,MULT*Cr4PNT.HORZ,

MULT*CMPNT .VERT , ULT*CMPNT. 0TH,
CMPNT.MINDAY,THIS FACILITY, 'C');

WRKTSK.ADDTO(JOBQ);
ENTERQT (WRTSK,NAT);
END
ELSE
ERROR('-POLIGY MISSING ",PRP.CTCODE);

END -- CONSTR-;
V PROCEDURE DAMAGE(ORDTYP ,ORDAMT ,DAMLST);

REF(ORDNANCE)ORDTYP ;REAL ORDAMT ;REF(HEAD)DAMLST;
BEGIN
REF(UNOFMS)MS ;REF(COMPONENT)CT ;REAL DAM;
MS :- CMPNT.UOM;
IF ATKLOG THEN OUTTEXTQ'-.FAC/DMG.");
ir MS.EQVMS -" THEN

BEGIN
IF MS.DAMCRIT - "EMDL" THEN

DAM:=BLAST(MS.DAMCRIT,EMDTAB(FACINDX) ,STD,ORDTYP,ORDAMT)
ELSE
DAM:=BLAST(MS.DAMCRIT,SIZE,STD,ORDTYP,ORDAMT); 'A7

END
E

IF MS.DAMCRIT - "EMDA" THEN
DAM:=BLAST(MS.DAMCRIT,SIZE*MS.COEF, STD,ORDTYP,ORDAMT)
ELSE
DAM:-BLAST(MS .DAMCRIT,SIZE*MS.COEF,STD,ORDTYP,ORDAMT);

IF ATKLOG THEN BEGIN OUTFIX(DAM,l,7); OUTIMAGE; END;
IF DAM <>0 THEN

B-97

..

BEGIN
IF DAMREP - NONE THEN

BEGIN
DAMREP: -NEW HITS(THIS FACILITY,DAM);
DAMREP. INTO(DAMLST);

END
ELSE ,
DAMREP. EXTENT: -DAMREP. EXTENT+DAM;

END;
END -- DAMAGE--
PROCEDURE FINISHED;

BEGIN

IF PRP -/- NONE THEN
BEGIN
PRP. UNDERWAY: -PRP. UNDERWAY- SIZE;
PRP. ONHAND : =PRP .ONHAND+SIZE;
BUILT :- TRUE;
END; I,

WRKTSK: -NONE;

END --FINISHED--;
PROCEDURE MAINTENANCE;

BEGIN

END -- MAINT -- "
REF(COMPONENT) PROCEDURE SELRPRCMP;

SELRPRCMP :- IF STD - XISTD THEN CMPO.INTL
ELSE IF CMPO.WARPR - NONE THEN CMPO.TEMP

ELSE CMPO.WARPR;
I

BOOLEAN PRO(CEDURE CKUOM(CPT, TOTDAM) ; REF(COMPONENT) CPT ; REAL TOTDAM;
BEGIN
IF CPT.UOM -/= CMPNT.UOM THEN V.

BEGIN
IF CMPNT.UOM.EQVMS - CPT.UOM.UOM THEN

DMGRT :- TOTDAM * CMPNT.UOM.COEF/CPT.SIZE
ELSE "16

BEGIN
DMGRT :- 0.0; -.' •

ERROR(CPT.UOM.UOM,CMPNT.UOM.UOM);
END ;

END ED

ELSE "
DMGRT :- TOTDAM / CPT.SIZE;

CKUOM :- IF DMGRT > 0.0 THEN TRUE ELSE FALSE;

END -- CKUOM -- ;

CMPNT :- IF STD= XISTD THEN CMPO.INTL ELSE CMPO.TEMP;
END ** FACILITY **; -,,

Figure B-97

p. Class SURFACE.

i. Purpose. This prefix CLASS is used for CLASSes: RUNWAY, PAVEMENT,
and HARDSTAND. These FACILITYs are similar in that craters are the means by.

B-98

IWA*'l I-Q&If' r IFIr

which damage is generated and repaired. There can be many craters to repair
and on RUNWAYs such craters may have different priorities (to simulate3attaining a minimum operational strip).

ii. Class SURFACE Skeleton. N

Parameters and Attributes for Class SURFACE.

I CLASS: SURFACE I PREFIX: FACILITY 0

I PARAMETERS: none I

VARIABLE ATTRIBUTES:
CRATERS integer counts craters to assess priority •

--- I
PROCEDURE ATTRIBUTES:

I-DAMAGE damage created as craters I
REPAIR separate repair TASKs are generated I

for each crater 0

Figure B-98

iii. Listing.

Listing of Class SURFACE.

FACILITY CLASS SURFACE;
BEGIN
INTEGER CRATERS;

PROCEDURE DAMAGE(ORDTYP,ORDAMT,DAMLST);
REF(ORDNANCE) ORDTYP; REAL ORDAMT;REF(HEAD)DAMLST;
BEGIN
IF ATKLOG THEN OUTTEXT(" .SUR/DAM. ");
IF ORDTYP IS BOMB THEN 0

S1 BEGIN
IF DAMREP = NONE THEN

BEGIN
DAMREP:-NEW HITS(THIS SURFACE,0.0);

DAMREP.INTO(DAMLST);
END;

WHILE ORDAMT > 0.0 DO
BEGIN
IF NOT DRAW(ORDTYP QUA BOMB.DUDRATE,UDUD) THEN

BEGIN
DAMREP.EXTENT:-DAMREP.EXTENT+I.0;
IF ATKLOG THEN OUTTEXT(" CRTR "); S
END;

ORDAMT :- ORDAMT - 1.0;

B-99

% ~~----.---

END;p

END;

END - - DAMAGE --

PROCEDURE REPAIRC EXTENT ,RC ,RS ,LOCX ,JOBQ);
INTEGER RC,RS,LOCX;REAL EXTENT;REF(HEAD)JOBQ;

BEGIN
REF(POLICY) PRI ; NTEGER CRTPRIO, P ;REF(COMPONENT) CT;
CRATERS : - CRATERS + EXTENT;
PRI:-RATE(RC, 'D' ,LOCX,FACINDX); -

IF PRI -/- NONE THEN '.

BEGIN
CT: -CMPO.WARPR; .

IF CT - NONE THEN
ERROR("CRATER RR MISSING",NOTEXT)
ELSE
BEGIN
CRTPRIO :- PRI.PRIOGRP;
IF THIS SURFACE IS RUNWAY THEN

BEGIN
WHILE EXTENT > 0 DO

BEGIN
P :- CRTPRIO -1 + DISCRETE(CRTRSPLIT,UHOLE);
IF P<l OR XPRIO<P THEN P :- XPRIO;
NEW TASK(P,RC,RS ,CT.HORZ,CT.VERT,CT.OTH,

GT.MINDAY,THIS FACILITY, 'W').ADDTO(JOBQ);
EXTENT :- EXTENT -1;
END;

END
ELSE *

WHILE EXTENT > 0 DO
BEGIN
NEW TASK(CRTPRIO,RC,RS ,CT.HORZ,CT.VERT,CT.OTH,

CT.MINDAY,THIS FACILITY, 'WI) .ADDTO(JOBQ); -

EXTENT :=EXTENT -1;
END;

END;
END;

END - - REPAIR --

END **SURFACE *

Figure B-99

B- 100

q. Class RUNWAY.

i. Purpose. This is the subCLASS of SURFACE for category codes "III",

r,!nways. .

ii. Listing.

Listing of Class RUNWAY.

SURFACE CLASS RUNWAY; I 111
BEGIN FACINDX 1; END ** RUNWAY*;

Figure B-100

r. Class PAVEMENT.

i. Purpose. This is the subCLASS of SURFACE for category codes:
"112", taxiways , "113", parking aprons, "116", aircraft pads, and "153", cargo
handling areas.

ii. Listing.

Listing of Class PAVEMENT.

SURFACE CLASS PAVEMENT; I 112 113 116 153;
BEGIN FACINDX :- 2; END ** PAVEMENT **;

Figure B-101 0

~~s. Class HARDSTAND. I

har i. Purpose. This is the subCLASS of SURFACE for category code "852",

hardstands or other paved or stabilized areas. %

ii. Listing.

Listing of Class HARDSTAND.
.

SURFACE CLASS HARDSTAND; j 852
BEGIN FACINDX : 19; END ** HARDSTAND **;

"-4 Figure B-102

4. t. Class BUILDING.

i. Purpose. This CLASS normally will represent the majority of

FACILITY objects represented during execution of the model. BUILDING
subCLASSes are: COMO, OPNS, REVETMENT, PIER, SHOP, STORAGE, MEDICAL, ADMIN,
and QTRS. A general repair procedure is provided within this CLASS, but may be
overriden by subCLASS preemption.

B-101

%%%% ' , •-I--

fimy -.riKKYRY77. -7 -777 r.-7 . ..
- -

. a -- 7. t- --i

a'.

,,

ii. Class BUILDING Skeleton.

Parameters and Attributes for Class BUILDING.
I

CLASS: BUILDING I PREFIX: FACILITY I

I PARAMETERS: none [

VARIABLE ATTRIBUTES:

RPRTSK TASK points to the repair TASK 'a a

CUMDAM real the amount of damage

PROCEDURE ATTRIBUTES:
REPAIR updates damage amount and either I

creates or changes RPRTSK I

Figure B-103 a |

iii. Listing.

Listing of Class BUILDING.

FACILITY CLASS BUILDING;
BEGIN .o,

REF(TASK)RPRTSK; REAL CUMDAM;

PROCEDURE REPAIR(EXTENT,RC,RS,LOCX,JOBQ);
INTEGER RC,RS,LOCX;REF(HEAD)JOBQ;REAL EXTENT;
BEGIN
REF(POLICY) PRI;REF(COMPONENT)CT; p
IF BUILT THEN

BEGIN
INSPECT RPRTSK WHEN TASK DO

CUMDAM :- CUMDAM * ((DUR-PROGRESS)/DUR) + EXTENT
OTHERWISE
CUMDAM := CUMDAM + EXTENT; .

PRI:-RATE(RC,'D',LOCX,FACINDX);

IF PRI -/= NONE THEN
BEGIN
IF CUMDAM > SIZE * SUPRFICL(FACINDX,

IF STD- XISTD THEN 1 ELSE 2) THEN
BEGIN
IF CUMDAM > SIZE * STRUCT(FACINDX, Ir v

IF STD- XISTD THEN I ELSE 2) THEN .
BEGIN
PRP.ONHAND:=PRP.ONHAND-SIZE;

IF RPRTSK -/= NONE THEN RPRTSK.OUT;
OUT;
END
ELSE ",

B-102

*&- *-a a-.,, % - .. 'a *% * *. - . - -a 'a ' a,. ,%, $

BEGIN "N

CT:-SELRPRCMP;
IF CKUOM(CT,CUMDAM) THEN

BEGIN 0

~BEGIN IF RPRTSK -- NONE THEN S.

SRPRTSK:-NEW TASK(PRI.PRIOGRP,RC,RS,

DMGRT*CT.HORZ,DMGRT*CT.VERT,DMGRT*CT.OTH
CT.MINDAY,THIS FACILITY,'W');

RPRTSK.ADDTO(JOBQ);
END
ELSE

END; END; RPRTSK.REVISE(DMGRT,CT);

END; EDEND;

END
ELSE
BEGIN
INSPECT WRKTSK DO PROGRESS := ENTIER(PROGRESS*CUMDAM/SIZE);

CUMDAM:=O.0;
END;

END -- REPAIR %

END ** BUILDING **;

Figure B-104

U. Class COMO

i. Purpose. This is the subCLASS of BUILDING for category codes
"131", communications buildings, and "133", navigation aids.

ii. Listing.

Listing- of Class COMO.

BUILDING CLASS COMO; I 131 133 ;
J BEGIN FACINDX 6; END ** COMO **;

Figure B-105

5%

B-103

9:

I,

v. Class OPNS.

i. Purpose. This is the subCLASS of BUILDING for category codes

"141", operational buildings, and "156", cargo handling facilities. 0

ii. Listing. .%

Listing of Class OPNS. . -

BUILDING CLASS OPNS; j 141 156;
BEGIN FACINDX :- 7; END ** OPNS **; ..*"

Figure B-106 - -

w. Class REVETMENT.

i. Purpose. This is the subCLASS of BUILDING for category codes ,

"149", revetments.

ii. Listing. 0

Listing of Class REVETMENT.

BUILDING CLASS REVETMENT; I 149
BEGIN FACINDX := 8; END ** REVETMENT **;

Figure B-107

x. Class PIER.

i. Purpose. This is the subCLASS of BUILDING for category codes:

"151", piers, "152", wharfs, "159", other waterfront operational, and "163",

moorings.

ii. Listing.

Listing of Class PIER.

BUILDING CLASS PIER; I 151 152 159 163
BEGIN FACINDX := 9; END ** PIER **; -

Figure B-108

y. Class SHOP.

i. Purpose. This is the subCLASS of BUILDING for category codes:

"211", aircraft maintenance, "213", ship maintenance, "214", automotive
maintenance, "215", weapon maintenance, "216", ammunition maintenance, "217",
electronic maintenance, "218", miscellaneous maintenance, and "219", real

property maintenance.

B-104

%S

ii. Listing.

Listing of Class SHOP.

BUILDING CLASS SHOP; I 211 213 214 215 216 217 218 219
BEGIN FACINDX := 10; END ** SHOP **;

Figure B-109

., z. Class STORAGE.

i. Purpose. This is the subCLASS of BUILDING for category codes:
"421", depot ammunition storage, "425", open ammunition storage, "431", depot
cold storage, "432", cold storage, "441", depot covered storage, and "442",
other covered storage.

ii. Listing.

Listing of Class STORAGE.

BUILDING CLASS STORAGE; j 421 425 431 432 441 442
BEGIN FACINDX := 11; END ** STORAGE **

Figure B-10

aa. Class MEDICAL.

i. Purpose. This is the subCLASS of BUILDING for category codes:
"510", hospital, "540", dental clinics, "550", dispenseries, and "560", other
medical.

ii. Listing.

Listing of Class MEDICAL.

BUILDING CLASS MEDICAL; n 510 540 550 560

BEGIN FACINDX := 12; END ** MEDICAL **

Figure B-ill

bb. Class ADMIN.

i. Purpose. This is the subCLASS of BUILDING for category code "610",
administrative building.

-1,

- B-I05

4 ,-- 4• ml N m .. .

ii. Listing. '- '.

Listing of Class ADMIN.

BUILDING CLASS ADMIN',; 610,"', J

BEGIN FACINDX :=13; END ** ADMIN *;.

Figure B-112

cc. Class QTRS.
%

i. Purpose. This is the subCLASS of BUILDING for category codes:..,

"721", enlisted housing, "722", mess facilities, "724", officers quarters, "

"725", emergency housing, and "730", community facilities.

ii. Listing. ,

.I

Listing of Class QTRS

BUILDING CLASS QTRS; I 721 722 724 725 730

BEGIN FACINDX := 14; END ** QTRS *;

Figure B-113

dd. Class PETRO.
-.

i. Purpose. This FACILITY subCLASS is used as a prefix to CLASSes:

POL, PIPELINE, and TANK. As the name implies object fices CLASS represent

facilities used for pumping, transporting and storing petroleum, oil and

lubricants. The default repair method is to replace rather than fix, unless

otherwise indicated.

ii. Class PETRO Skeleton.

.'p

Parameters and Attributes for Class PETRO

UCLASS: PETRO QRPREFIX: FACILITY , 'I

,%
dd.RClassRPETRoe

SVARIABLE ATTRIBUTES: none [z €

SPROCEDURE ATTRIBUTES: •
REPAIR PETRO FACILITYs are assumed to be s:

lubricant Th edestroyed when damaged unless

i otherwise indicated.

Figure B-114

iii. Listing. S

B-106

Listing of Class PETRO.

FACILITY GLASS PETRO;
BEGIN

PROCEDURE REPAIRC EXTENT, RG,RS ,LOGX ,JOBQ);
INTEGER RC ,RS ,LOGX;REF(HEAD)JOBQ;REAL EXTENT;
BEGIN
PRP.ONHAND:-PRP.ONHAND -SIZE;

OUT;
END -REPAIR-WI

END **PETRO*;

Figure B-115

ee.- Glass POLFACIL.

i. Purpose. This is the subCLASS of PETRO for the following petroleum <
dispensing category codes: "121", aircraft "122"1, marine "123", land vehicle
and "126"1, liquid fuel.

ii. Listing.

Listing of Class POLFACIL.

PETRO CLASS POLFACIL; I121 122 123 126;
BEGIN FAGINDX :-3; END ** POL*;

Figure B-116

bu i:.1 ls TANpos. This is the subCLASS of PETRO for category codes "1411",

bulkfue stoageand"124", operational fuel storage.

B-107

5 -10 -.r -e

Listing of Class TANK,

PETRO CLASS TANK; I 411 124;
BEGIN
PROCEDURE DAMAGE(ORDTYP , ORDAMT, DAMLST);

REF(ORDNANCE)ORDTYP;REF(HEAD)DAMLST ;REAL ORDAMT;
BEGIN
REAL SIZ2,DAM;REF(UNOFMS)MS;

IF ATKLOG THEN OUTTEXT(" .TNK/DMG. ");

MS :- CMPNT.UOM;
IF MS =/= NONE THEN

BEGIN
SIZ2:-IF MS.EQVMS - NOTEXT THEN SIZE ELSE SIZE*MS.COEF;
IF ORDTYP IS BOMB THEN

BEGIN
IF STD = XTSTD THEN

DAM:=BLAST("EMDA",SIZ2/HTANK,STD,ORDTYP,ORDAMT)
ELSE
DAM: =BLAST ("MAEF", SIZ2/HBLAD, STD, ORDTYP, ORDAMT)

END
ELSE
IF ORDTYP IS DEMOL THEN

DAM :- IF STD - XISTD THEN 1.0
ELSE IF ORDAMT > TNKDAMFAC THEN 1.0

ELSE 0.0;
IF ATKLOG THEN OUTFIX(DAM,2,7);

IF DAM > 0.0 THEN
BEGIN
IF DAMREP - NONE THEN

BEGIN
DAMREP:-NEW HITS(THIS TANK, 1.0);
DAMREP. INTO(DAMLST);
END;

END;
END;

END -- DAMAGE -- ;

FACINDX :- 4;
END ** TANK **;

Figure B-117 X ?5

gg. Class PIPE. "

i. Purpose. This is the subCLASS of PETRO for category code "125",
pol pipeline. .

ii. Listing.

B-108

p

Listing of Class PIPE.

PETRO CLASS PIPE; I125;6I BEGIN

PROCEDURE DAMAGE(ORDTYP,ORDAMT,DAMLST);
REF(ORDNANCE)ORDTYP ;REF(HEAD)DAMLST ;REAL ORDAMT;
BEGIN
REAL DAM;
IF ATKLOG THEN OUTTEXT(" .PIPE/DMG. ");

IF ORDTYP IS DEMOL THEN
NEW HITS (THIS PIPE, PIPDAMFAC*ORDAMT). INTO(DAMLST)
ELSE

IF ORDTYP IS BOMB THEN
BEGIN
DAM: -BLAST(CMPNT.UOM. DAMCRIT, EMDTAB(FACINDX),

STD ,ORDTYP ,ORDAMT);

IF DAM > 0.0 THEN
BEGIN
NEW HITS(THIS PIPE,DAM). INTO(DAMLST);
IF ATKLOG THEN OUTFIX(DAM,2,7);
END;

END;
END -- DAMAGE--;

PROCEDURE REPAIR(EXTENT,RC,RS , LOCX,JOBQ);

INTEGER RC,RS, LOCX;REF(HEAD)JOBQ;REAL EXTENT;
BEGIN
REF(POLICY)PRI;REF(COMPONENT) CT;
PRI:-RATE (RC'D',LOCX,FACINDX);
IF PRI -/= NONE THEN ,

BEGIN %

CT: -SELRPRCMP;
IF CKUOM(CT,EXTENT) THEN

NEW TASK(PRI.PRIOGRP,RC,RS,DMGRT*CT.HORZ, DMGRT*CT.VERT,
DMGRT*CT. OTH, CT. MINDAY, THIS FACILITY, 'W'). ADDTO (JOBQ> ;

END;

END -- REPAIR -- ;

FACINDX := 5; S
END ** PIPE **;

Figure B-118

|-

hh. Class UTILITY.

i. Purpose. This FACILITY subCLASS is used as a prefix to CLASSes: Vq
POWER, WATER, and WASTE. These CLASSes are characterized by their variety. at

Lines, generators, sewage treatment, storage tanks, etc., present a wide array V
of different structural types which must be handled by the damage and repair
routines. %

ii. Class Skeleton.

B-109
S

V ~ ~ 3 W17_- wV

1%

Parameters and Attributes for Class UTILITY

CLASS: UTILITY I PREFIX: FACILITY

i PARAMETERS: none I

VARIABLE ATTRIBUTES: I
RPRTSK TASK points to the repair TASK -

CUMDAM real measures cumulative damage '

--- I
PROCEDURE ATTRIBUTES: "
DAMAGE calculates utility damage I
REPAIR estimates repair workload

Figure B-119

iii. Listing.

Listing of Class UTILITY

FACILITY CLASS UTILITY;
BEGIN
REAL CUMDAM;REF(TASK)RPRTSK;

PROCEDURE DAMAGE(ORDTYP,ORDAMT,DAMLST);
REF(ORDNANCE) ORDTYP;REAL ORDAMT;REF(HEAD)DAMLST;

BEGIN
REF(UNOFMS)MS;REAL DAM;

MS :- CMPNT.UOM;
IF ATKLOG THEN OUTTEXT(" .UTL/DMG. "); ",-

IF MS.EQVMS -" THEN
DAM:-IF MS.DAMCRIT - "EMDL" THEN

BLAST(MS.DAMCRIT,EMDTAB(FACINDX),STD,ORDTYP,ORDAMT)
ELSE
BLAST(MS.DAMCRIT,SIZE,STD,ORDTYP,ORDAMT) ""

ELSE
DAM:-IF MS.DAMCRIT - "EMDL" THEN

BLAST(MS .DAMCRITEMDTAB(FACINDX) ,STDORDTYPORDAMT) '

ELSE
BLAST(MS.DAMCRIT,SIZE*MS.COEF,STD,ORDTYP,ORDAMT); <

IF ATKLOG THEN OUTFIX(DAM,2,7); ,

IF DAM C> 0 THEN
BEGIN
IF DAMREP =- NONE THEN

BEGIN
DAMREP:-NEW HITS(THIS FACILITY,DAM);

DAMREP.INTO(DAMLST);

B-l10

, !

END
ELSE
DAMREP. EXTENT: -DAMREP. EXTENT+DAM;

END;
END - - DAMAGE --

PROCEDURE REPAIR(EXTENT ,RC ,RS ,LOCX,JOBQ);
INTEGER RC ,RS ,LOCX;REF(HEAD)JOBQ;REAL EXTENT;

BEGIN
REF(POLICY) PRI ;REF(COMPONENT)CT;
IF CMPNT.UOM.DAMCRIT - "EMDL" THEN

BEGIN
-~~ PRI: -RATE(RC, 'D' ,LQCX,FACINDX);

IF FRI -/- NONE THEN
BEGIN
CT : - SELRPRCMP;
IF CKUOM(CT,EXTENT) THEN

NEW TASK(PRI.PRIOGRP ,RC ,RS,DMCRT*CT.HORZ ,DMGRT*CT. VERT,
DMGRT*CT.OTH,CT.HINDAY,THIS FACILITY, 'W') .ADDTO(JOBQ);

END ED

ELSE
IF BUILT THEN

BEGIN
INSPECT RPRTSI(WHEN TASK DO

CUMDAM :- CUMDAM * ((DUR-PROGRESS)/DUR) + EXTENT
OTHERWI SE
CUMDAM :- CUHDAM + EXTENT;

PRI:-RATE(RC, 'D' ,LOCX,FACINDX);
IF FRI -/- NONE THEN

BEGIN
IF CUMDAM > SIZE * SUPRFICL(FACINDX,

IF STD=XISTD THEN 1 ELSE 2) THEN

BEGIN
IF CUMDAM > SIZE * STRUCT(FACINDX,

IF STD=XISTD THEN I ELSE 2) THEN
BEGIN
PRP .ONHAND:=PRP.ONHAND-SIZE;
IF RPRTSK -/- NONE THEN RPRTSK.OUT;
OUT;
END
ELSE
BEGIN
CT :- SELRPRCMP;
IF CKUOM(CT,CUM1DAM) THEN

BEGIN
N IF RPRTSK -= NONE THEN
V BEGIN

RPRTSK: -NEW TASK(PRI .PRI~OGRP,RG,RS ,DMGRT*GT.HORZ,
DMGRT*CT .VERT, DMCRT*CT .0TH,

CT.MINDAY,THIS FAClLlTY,'W");
RFRTSK.ADDTO(JOBQ);
END

ELSE

B-ill

~ CC * . ~ *-* "V % %' ~ / ~~ ~ 'p

RPRTSK.REVISE(DMGRT,CT);
END;

END;

END; ., 4.
END;

END
ELSE ,.'

BEGIN -'

INSPECT WRKTSK DO PROGRESS:-ENTIER(PROGRESS*CUMDAM/SIZE);
CUMDAM: -0.0;
END;

END -- REPAIR -- ;

END ** UTILITY **;

Figure B-120

ii. Class POWER.

i. Purpose. This is the subCLASS of UTILITY for category codes "811",
electric power source and "812", electric power distribution.

ii. Listing.

Listingi of CMiss POWER

UTILITY CLASS POWER; I 811 812 ; '.

BEGIN FACINDX := 15; END ** POWER **;

Figure B-121 'a'

jj. Class WASTE. 0

i. Purpose. This is the subCLASS of UTILITY for category codes "831",
sewage treatment/disposal and "832", sewage collection.

ii. Listing. "

Listing of Class WASTE,

UTILITY CLASS WASTE; I 831 832
BEGIN FACINDX := 16; END ** WASTE **; -

Figure B-122
kk. Class WATER.

i. Purpose. This is the subCLASS of UTILITY for category codes "841",

potable water supply and "842", water distribution.

Nk

B-112

N.

ii. Listing.

Listing of Class WATER.

UTILITY CLASS WATER; I 841 842

BEGIN FACINDX 17; END ** WATER **;

Figure B-123

11. Class TRANSPO.

jx i. Purpose. This is the prefix GLASS to the subCLASSes ROAD and RR.
Through additions to the category codes ESC also identified tunnels and bridges
and included logic in the damage routine to permit reasonable amounts of repair
tasks to be generated.

ii. Class TRANSPO Skeleton.

Parameters and Attributes for Class TRANSPO.

, CLASS: TRANSPO I PREFIX. FACILITY

PARAMETERS:
STRUC character T'=tunnel, 'B'=bridge

VARIABLE ATTRIBUTES: none

--- I
I PROCEDURE ATTRIBUTES:
I DAMAGE estimates the level of damage that

occurs to the particular type of
ROAD or RR object

! REPAIR generates a new repair TASK for
the object regardless of other
existing repair TASKs

Figure B-124

B-113

a, A,a-. J . .P . P : . . . ' ' ' . - - '.. - .. .-. '-, '-- -
a-. " . .i

=
" "l i " .. - -

-
'- "i = '

!4

iii. Listing.,,

Listing of Class TRANSPO -

FACILITY CLASS TRANSPO(STRUC);
v

CHARACTER STRUC;
BEGIN

PROCEDURE DAMAGE(ORDTYP,ORDAMT,DAMLST);
REF(ORDNANCE) ORDTYP;REAL ORDAMT;REF(HEAD)DAMLST;
BEGIN I SPAN TYPES 1 ARE CANTILEVER, FILLED ARCH,

SPAN TYPES 2 ARE SUSPEN, TRUSS, STEEL ARCH.
(SEE WES ENGR TASK TEMPLATES FOR CORDIVEM.)
TUNNELS ONLY RECEIVE DEBRIS CLEARING.;

REAL DAM;

IF ATKLOG THEN OUTTEXT(" .TRANS/DMG. ");
IF ORDTYP IS BOMB THEN

DAM:= IF STRUC = 'M' OR STRUC = 'S' THEN
BLAST("EMDL",BRGFAC*EMDTAB(FACINDX),STD,ORDTYP,ORDAMT)
ELSE IF STRUC - 'A' THEN
BLAST("EMDL" ,EMDTAB(FACINDX) ,STD ,ORDTYP ,ORDAMT)

ELSE 0.0

IF ORDTYP IS DEMOL THEN
BEGIN

IF STRUC - 'A' THEN
BEGIN

IF THIS TRANSPO IS RR THEN
DAM: ORDAMT*RRDAMFAC
ELSE
DAM: =ORDAMT*RDDAMFAC

END
ELSE
DAM := IF STRUC - 'M' THEN SPNLEN(1)*ORDAMT/DRPSPAN(1)

ELSE IF STRUC - 'S' THEN
SPNLEN(2)*ORDAMT/DRPSPAN(2)

ELSE IF STRUC = 'T' THEN
ORDTYP QUA DEMOL.DEBRIS(ORDAMT)

ELSE 0.0;

IF DAM > 0.0 THEN
BEGIN
NEW HITS(THIS TRANSPO,DAM);

IF ATKLOG THEN OUTFIX(DAM,2,9);
END;

END;

END -- DAMAGE

PROCEDURE REPAIR(EXTENT,RC,RS,LOCX,JOBQ);
INTEGER RC,RS,LOCX;REF(HEAD)JOBQ;REAL EXTENT;

BEGIN
REF(POLICY)PRI;REF(COMPONENT)CT;
PRI:-RATE(RC,'D',LOCX,FACINDX);

l IF PRI =/= NONE THEN

B-114

MA1 -- X.

BEGIN
CT:-SELRPRCMP;

IF CKUOM(CT,EXTENT) THEN
NEW TASK(PRI.PRIOGRP,RC,RS,DMGRT*CT.HORZ,DMGRT*CT.VERT, .

DMGRT*CT.OTH,CT.MINDAY,THIS FACILITY,'W').ADDTO(JOBQ);END;'

END -- REPAIR-

END ** TRANSPO **;

Figure B-125

nun. Class ROAD.

i. Purpose. This is the subCLASS of TRANSPO for category code "851",

roads. 0

ii. Listing.

T "O CASS Listing of Class ROAD.

TRANSPO CLASS ROAD; I 851

BEGIN FACINDX 18; END ** ROAD **"

Figure B-126

nn. Class RR.

i. Purpose. This is the subCLASS of RR for category code "860",

railroads.

ii. Listing.

Listing of Class RR

TRANSPO CLASS RR; 1 860 ,
BEGIN FACINDX 20; END ** RR **;

Figure B-127 0

oo. Class AUNIT. ":

i. Purpose. This CLASS represents U.S. units that arrive, or are
already deployed in the theater. The listing of AUNIT shows it to be a data
structure without any operative logic (i.e., the CLASS body is empty and there .
is no CLASS body or procedural operatives). Each simulated day begins by
reading the force deployment list (TROOP FILE). Each valid unit entry gives
rise to the creation of a "NEW AUNIT". These objects may go directly to their
destination, may spend some time at a reception center before moving to their

4 destination, or, if bound for the FCZ, may go to a reception center, a staging
base, and then move out of the COMMZ. Depending upon its disposition, the unit
may use or require facilities at the installation it is found.

B-115

~ ' .. '* .*°o %

A., Z.A. A (- * - YA ~ W 1% -I V L W ~ . . .

ii. Class Skeleton.

Parameters and Attributes for Class AUNIT.

CLASS: AUNIT PREFIX: LINK I

PARAMETERS:
UTC text unit-type-code
SVC character service identifier (eg., 'A'=army) I
FWD boolean indicates unit will probably go to

FCZ

MEN real strength of unit from force file

TIMEOUT real when unit is moving through recep-I
tion and staging this indicates

when unit will move to next site

DEST INSTALLATION where the unit is going (next?) '

I.VARIABLE ATTRIBUTES: none

--- I
I PROCEDURE ATTRIBUTES: none I .

Figure B-128

iii. Listing.

Listing of Class AUNIT.

LINK CLASS AUNIT(UTC,SVC,FWD,MEN,TIMEOUT,DEST);
VALUE UTC;TEXT UTC; CHARACTER SVC;BOOLEAN FWD;
REAL MEN,TIMEOUT;REF(INSTALLATION)DEST; ;

Figure B-129

pp. Class REGION.

i. Purpose. One of the innovative features of SEAC is the REGION.
This CLASS accomplishes two unrelated objectives: it provides a means to
structure the theater in a way that accomodates both the geographic realities
and engineer organizational support plans; it also is the vehicle through
which runtime information is collected for post execution report generation.
REGIONs are defined by the user in a tree like hierarchy of user defined depth
and width. REGIONs can be broken down into subRFCIONs, which in turn can
divided into other subREGIONs. In addition at the lowest subREGION in each
branch of the hierarchy the MAPCELLs in the theater are assigned to particular
REGIONs. The results are complementary partitions of the theater embodied in
the REGION and MAPCELL definitions. Theater decomposition should follow a

B-116

rationale that supports engineer employment in the theater. The important
consideration to remember (and indeed the reason why the framework was adopted)
is that engineer units can be assigned to a REGION, and if so are available to
work on any task that arises at INSTALLATIONs or MAPCELLs within the REGION's
bounds. REGIONs have another use -- they can have special data collection
object attached to them (see CLASS REPORTER). One of the problems with large
detailed models like SEAC concerns the collection and presentation of
information and reports. How much is enough? SEAC maintains a large amount of
detailed data. If all possible information was collected each day, the model
would be consumed by reporting requirements. Instead, SEAC provides the
ability to capture or monitor much of what occurs, but at the user's option.
There are reports to confirm that the simulation is operating correctly (e.g.,
switches can be set to enable input data, enemy attack, and engineer resource
allocation to be monitored). But these are not the results that the user is
most interested in. The "results" have to do with what facilities were
required? Where are they required? When are they required? How much
capability do we have and where? What work gets done? The problem is that
there may be several score or hundred installations. There may also be a
similar number of MAPCELLs. Then there are the many, overlapping REGIONs. To
collect -data and produce reports at each and every possible location is

patently unrealistic. To remedy this problem ESC decided to use the
flexibility of the REGION (which can represent the theater or could be defined
to only represent a single MAPCELL-INSTALLATION) to focus report generation.
At the beginning of an execution, REGION for which reports are wanted are
identified. Data is presently collected on requirements, capabilities and
utilization occuring within that REGIONs boundary. That includes all
subREGIONs, all MAPCELLs, and all INSTALLATIONs that comprise the REGIJN.

ii. Class Skeleton.

I,-

-- B- 117

-- JT - __T I-%- IV %-

Parameters and Attributes for Class REGION

CLASS: REGION I PREFIX: LINK , -.

PARAMETERS:
I RX integer object's numeric identifier I , •

RCOUNTRY integer country identifier

VARIABLE ATTRIBUTES: I"-
SUPRGN REGION REGION to which this object belongsl
SUBRGNS HEAD set of subordinate REGIONs&MAPCELLs
ENGRASSETS HEAD set of engineer units in the REGION-
POOL ENGRPOOL the engineer unit capability pool
RPTR REPORTER object pointer when reporting is

desired
NOCANDO boolean flags exhaustion of this and higherI -

REGION's engineer capability Dr
work (saves fruitless queries) I

-- ---
PROCEDURE ATTRIBUTES: "
LOCRGN REGION searches recursively through the

hierarchy for a region I -

CANDO boolean determines whether the capability -
in this or higher regional engi- -
neer pools can do a worktask -.

CAPABILITY determines current (daily) capabil-I
ity of engineer units assigned to y. ,
the REGION I4

CLCTONE when the region has a REPORTER
assignment this routine collects

capability and requirements data I |

for post execution reports -
CLCTTWO same as above but for utilization I

I.. - ..

Figure B-130

iii. Listing.

B

..

Listing of Class REGION.

LINK CLASS REGION(RX,RCOU-NTRY);
INTEGER RX, RCOUNTRY;
BEGIN
REF(REGION) SUPRGN; REF(HEAD) SUBRGNS,ENGRASSETS;
REF(ENGRPOOL) POOL; REF(REPORTER) RPTR; BOOLEAN NOCANDO;

REF(REGION) PROCEDURE LOCRGN(X); INTEGER X;
BEGIN
REF(LINK)L; REF(REGION)R;
IF X - RX THEN LOGRGN :- THIS REGION ELSE L :-SUBRGNS.FIRST;
WHILE L -/- NONE DO

BEGIN
IF L IS REGION THEN

BEGIN
R :- L QUA REGION.LOCRGN(X);
IF R -/- NONE THEN". BEIGIN .1LOCRGN -R; L :-NONE; END

ELSE L:-L.SUC;
END
ELSE L:-L.SUC;

END:
END - - LOCRCN --

BOOLEAN PROCEDURE CANDO(RH,1RV ,RO, PRITY, SLICE);
REAL RH,RV,RO;INTEGER PRITY;REAL ARRAY SLICE;
BEGIN
REAL HS,VS,OS;
IF WORKLOG THEN

BEGIN
OUTTEXT("#*## CANDO REGION"I);OUTINT(RX,4);SETPOS(22); 0
OUTFIX(RH,2,8);OUTFIX(RV,2,8);OUTFIX(RO,2,8);

q END; t

INSPECT POOL DO
BEGIN
IF WORKLOG THEN e

BEGIN SETPOS(50);
OUTFIX(HC,2,8);OUTFIX(VC,2.8);OUTFIX(OC,2,8);OUTIMAGE;
END;

ITHE .001 TERM IS TO PREVENT NUMERIC ROUNDOFF ERRORS;
IF HG >= (RE - .001) THEN HS:=O.O ELSE HS:- RH - HG;
IF VC >= (RV - .001) THEN VS:=O.O ELSE VS:= RV - VC;
IF OC >- (RO - .001) THEN OS:=O.O ELSE OS:- RO - OC;
IF HS+VS+0S =0.0 THEN

BEG IN
CANDO TRUE;
HC HC - H;ENGRUSE(kPRITY,1):=ENCRUSE(PRITY,1)+R-H:
VGC: VC -RV;ENGRUSE(PRITY,2):-ENGRUSE(PRITY,2)+RV;

OC :=OG RO;ENGRUSE(PRITY,3):-ENGRUSE(PRITY,3)+RO;
END
ELSE
BEGIN

IF OS > 0 THiEN

B- 119

BEGIN
IF HS -=0 THEN

BEGIN
IF VS - 0 TI-EN ~

BEGIN INTEGER XHV;
XliV :- (HC - RH-)+(VC-RV);
IF XiV > OS THEN

BEGIN
RH:-RH+OS*((HC-RH)/XHV);
RV:-RV+OS*((VG-RV)/XHV);
OS :- 0; RO :- OC;
END
ELSE
BEGIN
RH:-HG;RV:=VG;OS:=OS-XHV;
END;

END *

ELSE
IF HC > (RH + OS) THEN

BEGIN RH:=RH+OS;RO:=OC;OS:-=O;END
ELSE BEGIN OS:=OS-(HG-RH);RH:=HC;END;

END
ELSE
IF VS - 0 THEN

BEGIN
IF VC > (RV + OS) THEN

BEGIN RV:-RV+OS ;RO:=OC;0S :=0;END
ELSE BEGIN OS:=OS-(VC-RV);RV:=VC;END;

END;
END; K

IF HS+VS+OS -0.0 THEN .

BEGIN
GANDO :=TRUE;
HC : HG - RH;ENGRUSE(PRITY,l):-ENGRUSE(PRITY,1)+RH;
VGC: VC - RV;ENGRUSE(PRITY,2):-ENGRUSE(PRITY,2)+RV; ~ .

OC :-OC - RO;ENGRUSE(PRITY,3):=ENGRUSE(PRITY,3)+RO;
END .

ELSE
IF SUPRGN -NONE THEN

BEGIN
CANDO :-FALSE;
IF HC+VG+OG <- 0.0 THEN NOCANDO TRUE;
SLIGE(l):-HS;SLIGE(2):-VS;SLICE(3):=OS;
END
ELSE
IF SUPRGN.NOCANDO THEN
BEGIN
CANDO :- FALSE;
IF HC+VC+OC <- 0.0 THEN NOCANDO TRUE;
SLIGE(l):=HS;SLICE(2):-VS;SLICE(3):=OS;
END
ELSE
IF SUPRGN.CA1NDO(HS,VS,OS,PRITY,SLIGE) THEN
BEGIN

B- 120

ca -4. 7" P" .m-z---w--r---

CANDO :-TRUE; 0
IF HS -=0 THEN

BEGIN HC:-HC - RH;
ENGRUSE(PRITY,1) :-ENGRUSE(PRITY,1)+RH:END
ELSE
BEGIN
ENGRUSE(PRITY,1) :-ENGRUSE(PRITY,I)+HG;
HG : 0.0;
END;

IF VS -=0 THEN
-. BEGIN VC:=VC - RV;

ENGRUSE(PRITY,2) :-ENGRUSE(PRITY,2)+RV;END
ELSE
BEGIN
ENGRUJSE(PRITY,2) :=ENGRUSE(PRITY,2)+VG;
VC :-0.0;
END;

p
IF OS - 0 THEN

BEGIN OG:=OG - RO;
ENGRUSE(PRITY,3):=ENGRUSE(PRITY,3)+RO;END

ELSE
BEGIN
ENGRUSE(PRITY,3) :=ENGRUSE(PRlTY,3) OC;

OG : 0.0;
END;

END
ELSE
CANDO :=FALSE; ..

END END
OTHERWISE%

BEGIN
IF WORKLOG THEN OUTIMAGE;
IF SUPRGN -- NONE THEN

CANDO :=SUPRGN.CANDO(RI{,RV,RO,PRITY,SLIGE)
ELSE
BEGIN
CANDO :=FALSE; SLICE(l):=HS; SLICE(2):-VS; SLIGE(3):=OS;
END;

END;

END -- GANDO

PROCEDURE GAPABILITY(LPOS,REP); BOOLEAN REP;INTEGER LPOS;
BEGIN
REF(LINK)R;REF(GEOLOG)G;REF(INSTALLATION)I;

PROCEDURE SHOW(P) ;REF(ENGRPOOL)P;
BEGIN
IF REP THEN

BEGIN SETPOS(53);OUTFIX(P.HC,1,8); "

OUTFIX(P.VC,1,8) ;OUTFIX(P.OG,1,8) ;OUTIMAGE;
END;

END - - SHOW

B-121I

IF REP THEN lap
BEGIN SETPOS(LPOS);
OUTTEXT (" I)

SETFOS(LPOS) ;OUTINT(RX,5); j~

END;
NOGANDO :-FALSE;
IF POOL - NONE THEN

BEGIN POOL.TALLY(ENGRASSETS,REP); SHOW(POOL); END
ELSE
IF NOT ENGRASSETS.EMPTY THEN 7

BEGIN POOL: -NEW ENGRPOOL;

POOL.TALLY(ENGRASSETS ,REP);
SHOtJ(POOL);
END; '

IF POOL - NONE THEN
BEGIN IF SUPRGN - NONE THEN NOCANDO :=TRUE

ELSE IF SUPRGN.NOCANDO THEN NOCANDO :-TRUE; lp
END;

R: -SUBRGNS.FIRST;
WHILE R-/=NONE DO

BEGIN
INSPECT R

WHEN REGION DO CAPABILITY(LPOS+5,REP)
WHEN REGGELL DO

INSPECT TG WHEN MAPOELL DO
BEGIN
IF REP THEN

BEGIN SETPOS(40);OUTTEXT("AREA ");END;
G: -GEOSET.FIRST;
WHILE G-/=NONE DO

BEGIN
IF REP THEN

BEGIN SETPOS(47) ;OUTTEXT(G.GEOLAB) ;END;
I: -G.SITES.FIRST;
WHILE I=/-'NONE DO

BEGIN
INSPECT I DO IF GOUN - RCOUNTRY THEN

BEGIN
GANTDO :- FALSE;

IF POOL-/=NONE THEN
BEGIN
POOL.TALLY(ENGRS ,REP);
SHOW(POOL);

END
ELSF

IF NOT ENCRS.EMPTY THEN

BEGIN POOL: -NEW ENGRPOOL;
POOL.TALLY(ENGRF,REP); V

SHOW(POOL);
END
ELSE
IF NOCANDO THEN -

GANTDO :- TRUE;

END;

B-122

I I. SUC;

END;

END; ED

o'. R: -R.SUC;
END;

END - - CAPABILITY-;

PROCEDURE CLCTONE(REP) ;REF(REPORTER)REP;
BEGIN REF(LINK)R;REF(GEOLOC)G;REF(INSTALLATION)I ;INTEGER J;

PROCEDURE EDATA(C,S,P) ;REAL ARRAY C,S;REF(ENGRPOOL)P;
IF P -/= NONE THEN

BEGIN
C(1):=C(l) + P.HC;

.*,c C(2):-C(2) + P.VG;

C(3):=C(3) + P.OG;
FOR J:-1,2,3,4,5 DO S(J) S(J) + P.ESVC(J);
END -- EDATA-;

PROCEDURE TDATA(A,B,TQ);REAL ARRAY A,BREF(H-EAD) TQ,
BEGIN REF(TASK) T;

j T :- TQ.FIRST;
WHILE T -/- NONE DO

BEGIN
IF RCOUNTRY = T.NAT THEN
INSPECT T DO

BEGIN
A(PRIO, 1) :=A(PRIO,1)+WHRZ;

A(PRIO,2) :=A(PRIO,2)iWVER;
A(PRIO,3) :=A(PRIO,3)+WOTH;
IF TIM4E <- TIMIN+DUR-1 THEN

BEGIN
IF WRKTYP - 'C' THEN

B(SVC 1) :=B(SVC, 1)+DAILY
ELSE
IF WRKTYP - 'W' THEN

B(SVC, 2) :=B(SVC ,2)+DAILY;
END;

END;
T :-T.SUC;
END;

2 END --- TDATA ---;

EDATA(REP. CAP ,REP. SVCAP,POOL);
R :- SUBRGNS.FIRST;

~', ~WHILE R -/- NONE DO

BEGIN
A INSPECT R WHEN REGION DO

BEGIN
IF RPTR =/= NONE THEN

BEGIN
RPTR. ZED;

B-123

.q. l m

CLCTONE(RPTR);
FOR J :-1,2,3,4 DO

BEGIN
REP.RQT(J,1):-REP.RQT(J,1) + RPTR.RQT(J,1);
REP.RQT(J,2):=REP.RQT(J,2) + RPTR.RQT(J,2);
REP.RQT(J,3):-REP.RQT(J,3) + RPTR.RQT(J,3);
END;

FOR J :-1,2,3,4,5 DO
BEGIN
REP.WRKGAT(J,1):=REP.WRKCAT(J,1)+RPTR.WRKCAT(J,1);
REP.WRKGAT(J,2):-REP.WRKCAT(J,2)+RPTR.WRKCAT(J,2);
REP.SVCAP(J) :-REP.SVCAP(J) + RPTR.SVCAP(J);
END;

REP.AP~l:-RE.CAP1)+RTR.CP~l)

REP.CAP(1) :-REP.CAP(1)+RPTR.CAP(1);
REP.CAP(2) :-REP.CAP(2)+RPTR. CAP(2);

END
ELSE
CLCTONE(REP);

END
WHEN REGCELL DO

BEGIN
IF TC IS MAPCELL THEN 4

BEGIN
TDATA(REP.RQT,REP.WRKGAT,TC.TASKLIST);

a G :-TC.GEOSET.FIRST;
WHILE G -/- NONE DO

BEGIN
I: -G.SITES.FIRST;
WHILE I -/- NONE DO

BEGIN
IF I.GOUN -RCOUNTRY THEN

BEGIN
TDATA(REP.RQT,REP.WRKCAT,I.JOBS),
EDATA(REP . AP,REP .SVCAP ,I. POOL);
END;

I :-I.SUG;
END;

G :-G.SUC;
END; .

END;
END;

R R.SUC;
END;

IF REP -RPTR THEN REP.ONEOUT;
END - - CLCTONE ---

PROCEDURE GLCTTWO(REP) ;REF(REPORTER)REP;
BEGIN REF(LINK)R;REF\'GEOLOC)G;REF(INSTALLATION)I;

PROCEDURE UDATA(U, P) ;REAL ARRAY U; REF(ENGRPOOL) P;
BEGIN INTEGER I;
IF P -/- NONE THEN

FOR 1:-i, 2, 3, 4 DOIl

B- 124

BEGIN -
U(1,1:-U(,I) F.ENRUSEIJ.

U(I,2):=4J(I,1) + P.ENGRUSE(I,1);
U(I,2):-U(I,2) + P.ENGRUSE(I,3);

END;

END -- UDATA-;

UDATA (REP. UTLZ,POOL);
R :-SUBRGNS.FIRST;
WHILE R -/- NONE DO

BEGIN
INSPECT R WHEN REGION DO

BEGIN
IF RPTR -/- NONE THEN

BEGIN INTEGER P;
CLCTTWO(RPTR);

FOR P :-1,2,3,4 DO
BEGIN
REP.UTLZ(P,l):=REP.UTLZ(P,1) + RPTR.UTLZ(P,l);
REP.UTLZ(P,2):-REP.UTLZ(P,2) + RPTR.UTLZ(P,2);
REP.UTLZ(P,3):=REP.UTLZ(P,3) + RPTR.UTLZ(P,3);

END; 7 0

END
N ELSE

GLCTTWO(REP);
END
WHEN REGGELL DO

BEGIN
IF TCG IS MAPCELL THEN

G -TC.GEOSET.FIRST;
WHILE G -/- NONE DO

BEGIN
I: -G.SITES.FIRST; ;
WHILE I -/- NONE DO

BEGIN
IF I.COUN - RGOUNTRY THEN

A I UDATA(REP.UTLZ,I.POOL);
I -I.SUC;

END; .

G : G.SUG;
END;

END;
END;

R :-R.SUC;
END;

IF REP -- RPTR THEN REP.TWOUT;
END - - CLCTTWO --

SUBRGNS :- NEW HEAD;
ENGRASSETS :- NEW HEAD;
END **REGION**

Figure B-131

B- 125

I

S

qq. Class REGCELL." L

V

i. Purpose. This CLASS is used to put MAPCELL pointers in a REGION's
subordinate list. Since MAPCELL is not prefixed by LINKAGE, it cannot be

INCLUDED in the set established by SUBRGNS. Since there may be more than one
regional hierarchy (in a multi-national COMMZ), prefixing MAPCELL with LINK V
would not solve the problem because it could then only belong to one REGION
object. REGCELL was defined to bridge this software gap. REGCELL objects are -_

created for each REGION-MAPCELL relation.

ii. Class Skeleton.

Parameters and Attributes for Class RECCELL

CLASS: REGCELL I PREFIX: LINK I

I PARAMETERS:
TC MAPCELL indicates a mapcell that is de-

fined to be in the REGION I

VARIABLE ATTRIBUTES: none I . ,'

I---I
PROCEDURE ATTRIBUTES: none I

Figure B-132 ""

I

-. ' .e-

'S

B- 126 3. , fe

-%.

.

iii. Listing.
'-

Listing of Class REGCELL. 2

LINK CLASS REGCELL(TC); REF(MAPCELL)TC;

Figure B-133
AW %

rr. Class HITS.

i. Purpose. SEAC explicitly carries out attacks by enemy planes and
ground troops against facilities. Since a facility may be hit by more than one
attack it proved necessary to accumulate the damage from successive attacks.

When an attack results in damage a new HITS object is created and placed in the
DAMLIST set. All subsequent attacks carried out will modify the extent of
damage that is contained in the HITS object associated with the particular .

FACILITY being attacked.

ii. Class Skeleton.
Ne

Parameters and Attributes for Class HITS

CLASS: HITS I PREFIX: LINK

I PARAMETERS:
FAC FACILITY points to the object that received 1

damage
EXTENT real the amount of calculated damage I

VARIABLE ATTRIBUTES: none I
- .I . I.

--- I
I PROCEDURE ATTRIBUTES: none .4'.

Figure B-134
- UW

iii. Listing.

B-127

%*U

1. iiv -F - -W . .

, %

Listing of Class HITS -

LINK CLASS HITS(FAC,EXTENT); REF(FACILITY)FAC;REAL EXTENT;
BEGIN
IF ATKLOG THEN

BEGIN OUTTEXT("&HIT& DAMAGE OF ");
IF FAC.PRP -/- NONE THEN OUTTEXT(FAC.PRP.CTCODE) -

ELSE BEGIN OUTTEXT(" MSR#"); OUTINT(FAC.FACINDX,3);END;
OUTFIX(EXTENT,1,7);OUTTEXT(" AT TIME"); - -
OUTFIX(TIME,2,6);OUTIMAGE; -

END;
END *** HITS ***;

Figure B-135

ss. Clas6 TASK.

i. Purpose. Engineer work projects are represented at INSTALLATIONs
and MAPCELLs by objects from CLASS TASK. The type of work (construction or
repair), its priority (vital, critical, essential, or necessary), the duration, -

the average daily hours by skill (horizontal, vertical, and other), and the
requesting country and service are all reflected in the job data. Each day the
available engineer capability is apportioned to projects to accomplish the
highest priority TASKs, to the extent of available assets. When TASKs are
finished they are removed from the job queues and the FACILITY is either -

constructed or repaired. (Presently no special consideration is given to
projects that stay in the queue for an inordinate length of time. Because of
this at the end of the simulation we find some TASKs that have been in the -

queue since day 0 but have not been performed because the priority was low, or . .,,
there was insufficient capability. There probably should be a means to either
drop or elevate these projects.)

ii. Class Skeleton.

B.

-.€

'%V

B-128 ,

Parameters and Attributes for Class TASK

CLASS: TASK f PREFIX: LINK
PARAMETERS: - - -

PRIO integer numeric priority (eg., 1-vital)

I NAT integer nationality
SVc integer service that generated TASK I
WHRZ real daily horizontal requirements I a

I WVER real " vertical
WOTH real " other
DUR real minimum days to complete work

P FACPTR FACILITY the FACILITY that caused this TASK

I WRKTYP character w=damage, c-construction

, I VARIABLE ATTRIBUTES:
PROGRESS real days of work accomplished

. DAILY real daily horizontal+vertical+other hrsl
I TIMIN real day the TASK was generated

--- I
PROCEDURE ATTRIBUTES:
DUMP prints objects's content
PERFORM changes attributes when work is

performed
REVISE adjusts damage when additional hits

occur
I ADDTO places object in job queue accord-

ing to priority and amount of
work required

Figure B-136

iii. Listing.
yS

Listing of Class TASK

LINK CLASS TASK(PRIO,NAT,SVC,WHRZ,WVER,WOTH,DUR,FACPTR,WRKTYP);

INTEGER PRIO,NAT,SVC;REAL WHRZ,WVER,WOTH,DUR;
REF(FACILITY)FACPTR;CHARACTER WRKTYP; -W

BEGIN

REAL PROGRESSDAILY,TIMIN;

PROCEDURE DUMP;
BEGIN SETPOS(40);OUTFIX(TIMIN,I,5);

OUTFIX(PROGRESS,1,6);OUTCHAR('/');OUTFIX(DUR,I,4);
OUTFIX(DAILY,2,8);OUTINT(PRIO,4);OUTCHAR('-');

IF FACPTR -/. NONE THEN

B-129

. I l ! ! --

A. -;o* v,'
u

.A. A % P.- - A. .P . '

o-. .- *

BEGIN - ,

OUTTEXT(FACPTR.PRP.CTCODE);OUTCHAR('/');
OUTFIX(FACPTR.SIZE,2,12);
END

ELSE OUTTEXT("MSR/");
OUTCHAR(WRKTYP);
OUTIMAGE; "
END;

PROCEDURE PERFORM(PORTION);REAL PORTION;
BEGIN
PROGRESS := PROGRESS + PORTION; .

IF PROGRESS >- DUR THEN
BEGIN :
OUT;
IF NOT FACPTR.BUILT THEN FACPTR.FINISHED

ELSE
IF FACPTR.WRKTSK == THIS TASK THEN -

FACPTR.WRKTSK :- NONE;
END
ELSE
IF DUR-PROGRESS < I THEN

BEGIN
PROGRESS :- DUR - PROGRESS;
WHRZ PROGRESS * WHRZ; . V
WVER PROGRESS * WVER;
WOTH PROGRESS * WOTH;

DUR 1.0;PROGRESS 0.0; S .
END; -.

END-- PERFORM --;

PROCEDURE ADDTO(Q); REF(HEAD)Q;
BEGIN

REF(TASK)T;
T :- Q.FIRST; ,

IF T - NONE THEN INTO(Q)
ELSE,.
WHILE T =/= NONE DO

IF PRIO > T.PRIO THEN T :- T.SUC

ELSE *

IF PRIO < T.PRIO THEN -
BEGIN PRECEDE(T); T :- NONE; END - ,'
ELSE
IF DAILY <= T.DAILY THEN *

BEGIN PRECEDE(T); T :- NONE; END

ELSE T :- T.SUC;
IF PREV == NONE THEN INTO(Q);

END -- ADDTOJOBS -- "

PROCEDURE REVISE(MULT,RPRCT);REAL MULT;REF(COMPONENT)RPRCT;
BEGIN
WHRZ:=MULT*RPRCT.HORZ; -

WVER:=MULT*RPRCT.VERT;
WOTH:=MULT*RPRCT.OTH;

B-130

PROGRESS 0.0; TIMIN :- TIME;
DAILY :- WHRZ+WVER+WOTH;

END -- REVISE --;

TIMIN :- TIME;DAILY := WHRZ+WVER+WOTH;
END ** TASK **;

Figure B-137

tt. Class INSTALLATION.

i. Purpose. Objects from this CLASS play a major role in SEAC. Most
requirements generated by SEAC result from unit needs. Units arrive at and
move to INSTALLATIONs. Facility requirements are 6enerated at INSTALLATIONs.
This is the first step in a series of actions that are carried out each day at
every installlation included in the simulation: arriving and transient units
are processed, new facility requirements are calculated, damage is assessed,
new engineer tasks are placed into a job queue, engineer unit capability is
determined, projects are selected from the job queue for work according to
priorities, and upon completion jobs are removed from the queue and facilit.y
and real property information maintained in the installntion updated
accordingly. As one can see much can occur within an in!.tallation.
INSTALLATION also has several subCLASSes (eg., AIRBASEs, PORTs, DEPOTs, etc.)
that permit additional data to be maintained and special processing rules to be
implemented (primarily through SIMULA's VIRTUAL procedure concept).

ii. Class INSTALLATION Skeleton.

Parameters and Attributes for Class INSTALLATION

CLASS: INSTALLATION j PREFIX: LINK

PPARAMETERS:
- ICOUN integer country index

SRVC integer service index

INAME text name of installation
I"VIRTUAL:

CHECKIN processes arriving units
STATUS produces installation report

I TGTSELECT randomly selects a target facility
from facility group

GETS adds facility to appropriate group

VARIABLE ATTRIBUTES:
I JOBS HEAD contains INSTALLATION's TASKs
I ENGRS HEAD contains INSTALLATION's engineer

units
ARRIVALS HEAD units arriving at the INSTALLATION

that day
FBLDG HEAD buildingt assets
FPOL HEAD POL facilities

-,FUTIL HEAD utility assets

B-131

b ~~~~~~ ~ ~" q 17 7...- ' "V IV 771

FROAD HEAD roadway assets I
FRUN HEAD runway assets
DAMLIST HEAD list of HITS received that day I
POOL ENGRPOOL object to accumulate capability .

JOB TASK used to refer to indiviual TASKs in
JOBS

ASSETS REALTYTREE AVL tree of asset tallies I
SORTIESRECVD integer air sorties count
RCATK integer ground attack count

BOMBHITS integer bombs dropped.-
ROCHITS integer rockets firE at .

INDX integer INSTALLATION category indexI
CANTDO boolean flag used when capability exhaustedl ., ,

POPULATION real permanent party population I

---I
PROCEDURE ATTRIBUTES: ,
DAMCNTRL exmaines the HITS entries (if any) I

and initiates repair determination
CHECKIN takes units (see AUNIT) from ar-

rival queue and in-processes then
DETRQMT the FACILITY requirements for each I

arriving unit are determined I
GETS places a new FACILITY into its pro-"

per category " -
TGTSELECT FACILITY randomly selects a target from a I

FACILITY set based on the aimpointl
of the attacking plane/unit

STATUS prints INSTALLATION data
TRIAGE goes through the task list and ,

assigns jobs according to priority I ,

and available engineer capability
CANDO boolean this procedure determines when a

job can be done based on capa- ,I
bility at the INSTALLATION and I -

and in area support to it (i.e., I
capability at the REGIONs) .-

4

Figure B-138

%
%

I
,

B-132%

iii. Listing.

Listing of Class INSTALLATION

LINK CLASS INSTALLATION(COUN,SRVC,INAME);
VALUE INAME;TEXT INAME;
INTEGER COUN,SRVC;
VIRTUAL :PROCEDURE CHECKIN,STATUS,TGTSELECT,GETS;
BEGIN

ar REF(HEAD) JOBS,ENGRS,ARRIVALS,FBLDG,FPOL,FUTIL,FROAD,FRUN,DAMLIST;
REF(HEAD) ARRAY FACLIS(l:5);
REF(ENGRPOOL)POOL; REF(TASK)JOB; REF(REALTYTREE)ASSETS;
INTEGER SORTIESRECVD, RCATK, BOMBEITS, ROCHITS, INDX;
BOOLEAN CANTDO; REAL POPULATION;

PROC EDURE DAMCNTR',;
BEGIN
REF(HITS)H;
FOR H:-DAMLIST.FIRST WHILE H -/= NONE DO

BEGIN
H.FAC.REPAIR(H.EXTENT,COUN,SRVC,INDX,JOBS);
IF H.FAG.DAMREP -- H THEN H.FAC.DAMREP NONE;
H. OUT;

N. END;
END - -DAMCNTRL--;

PROCEDURE CHECKIN;
BEGIN
REF(AUNIT) A;REAL NEWTROOPS;A /NOED

BEGI

NEWTROOPS:=NEWTROOPS + A.MEN;
DETRQMT(A.UTC,l.0);
A. OUT;
END;

DETRQMT("PEOPLE" ,NEWTROOPS);
POPULATION :-POPULATION + NEWTROOPS;
END - - CHECKIN --

PROCEDURE DETRQMT(KEY,MAG); TEXT KEY;REAL MAG;
BEGIN
REF(FACELEM) ELT; REF(FACTOR) F; REF(PROPERTY) RP;
IF MAG > 0.0 THEN

BEGIN

F :- FAGTAB.FIND(KEY);
*IF F IS FACTORX THEN F :-F QUA FACTORX.SEL(COUN,SRVC);

IF F -/- NONE THEN ELT:-F.FIRST;
WHILE ELT -/- NONE DO

BEGIN
'(C IF ELT.UOM - "XX" THEN

DETRQMT(ELT.CODE, ELT.RATE)
ELSE
3EG IN

B-133 "

%5 5

RP :-ASSETS.FIND(ELT.CODE);
IF RP - NONE THEN

BEGIN
RP :- NEW PROPERTY(ELT.CODE);
IF RP.XREF(THIS INSTALLATION) THEN RP.RANK(ASSETS)

ELSE RP :- NONE;
END;

IF RP -/- NONE-THEN RP.NEEDS(ELT.RATE*MAG,ELT.UOM);
END;

ELT :-ELT.NX;
END;

END;
END -- DETRQMT-;

PROCEDURE GETS(F,C) ;REF(FACILITY)F;TEXT C;

IF F IN BUJILDING THEN F.INTO(FBLDG)
ELSE IF F IN PETRO THEN F.INTO(FPOL)

ELSE IF F IN UTILITY THEN F. INTO(FUTIL)
ELSE IF F IN TRANSPO THEN F.INTO(FROAD)

ELSE IF F IN SURFACE THEN F.INTO(FRUN);

REF(FACILITY) PROCEDURE TGTSELECT(K); INTEGER K;

BEGIN
IF K - 0 THEN K :-DISCRETE(TGTDEFAULTS(INDX).VECTOR,UTSEL);
IF FACLIS(K).EMPTY THEN

BEGIN INTEGER L;
FOR L:-1 STEP IUNTIL 3DO

BEGIN
K :-DISCRETE(TGTDEFAULTS(INDX) .VECTOR,UTSEL);

IF NOT FACLIS(K).EMPTY THEN L :- 3;
END;

IF K - 0 THEN TGTSELECT :- NONE
ELSE TGTSELECT :- RANDPICK(FACLIS(K));

END
ELSE
TGTSELECT :- RANDPICK(FACLIS(K));

END - - TGTSELECT --

PROCEDURE STATUS(ASTA,ESTA,TSTA) ;BOOLEAN ASTA,ESTA,TSTA;
BEGIN REF(TASK) TSK;
OUTTEXT("l -- ["1);OUTTEXT(INAME); -

OUTCRAR('/');OUTINT(COUN,1);OUTCHAR('/');OUTINT(SRVC,1);OUTCHAR('/');
OUTTEXT("] STATUS REPORT.") ;SETPOS(50) ;OUTTEXT(" POPULATION:");
OUTFIX(POPULATION,O,7); OUTTEXT(", SORTIES:") ;OUTINT(SORTIESRECVD,5); .

OUTTEXT(", SPF ATTACKS:") ;OUTINT(RCATK,5); OUTIt4ACE;
IF ASTA THEN ASSETS.TRAVERSE;
OUTTEXT(" ENGR UNITS") ;OUTINT(ENCRS .CARDINAL, 6);
IF ESTA AND POOL -/- NONE THEN POOL.TALLY(ENGRS,TRUE);
OUTTEXT(" TASKS") ;OUTINT(JOBS .CARDINAL,6);

IF TSTA THEN
BEGIN

TSK :- JOBS.FIRST;
IF TSK -- NONE THEN OUTIMAGE

ELSE B-134

WHILE TSK .-- NONE DO BEGIN TSK.DUMP; TSK TSK.SUC; END;
END
ELSEI OUTINAGE;

END - - STATUS --

PROCEDURE TRIAGE(MPCL,PRIX); REF(MAPCELL)MPCL; INTEGER PRIX;
BEGIN
REF(TASK)T;REF(LINK)JT;REAL ARRAY PIECE(1:3) ;REAL MINPIECE;

IF PRIX - 1 THEN T :-JOB :- JOBS.FIRST ELSE T JOB;
WHILE T -/- NONE DO

IF CANTDO THEN T:- NONE
ELSE

KN IF JOB.PRIO <- PRIX THEN
BEGIN
IF CANDO(MPCL,JOB.WIIRZ,JOB.WVER,JOB.WOTH,PRIX,PIEGE) THEN

BEGIN
T: -JOB.SUC;
JOB.PERFORM(1.0);
JOB :- T;

END
ELSE
BEGIN
PIECE(1):=IF JOB.WHRZ - 0 THEN 0.0 .

ELSE PIECE(1)/JOB.WHRZ;
PIECE(2):-IF JOB.WVER - 0 THEN 0.0 .0

ELSE PIECE(2)/JOB.tJVER;
PIEGE(3):-IF JOB.WOTH - 0 THEN 0.0

ELSE PIECE(3)/JOB.WOTH;
IF PIECE(1) > PIECE(2) THEN

BEGIN
IF PIEGE(1) > PIECE(3) THEN MINPIEGE:=1-PIECE(1)

ELSE HINPIECE :- 1 - PIEGE(3);

ELSE

IF PIECE(2) > PIECE(3) THEN MINPIECE:-1-PIECE(2)
ELSE MINPIECE :- 1 - PIECE(3);

IF MINPIECE >.- PIECEWORK THEN

BEGIN IF CANDO(MPGL,MINPIECE*JOB.WHRZ,
MINPIECE*JOB.WVER, MINPIECE*JOB.WOTH,
PRIX,PIECE) THEN
BEGIN
T: -JOB.SUC;

JOB.PERFORM(MINPIECE);
JOB :-T;
END
ELSE
T :- JOB :-JOB.SUC;

END .
ELSE
T JOB :- JOB.SUC;

END;
END

B-135

17

4

ELSE

T :- NONE;
END -- TRIAGE -- ;

BOOLEAN PROCEDURE CANDO(MC,RH,RV,RO,PRITY,SLICE);
REF(MAPCELL)MC;REAL RH,RV,RO;INTEGER PRITY; REAL ARRAY SLICE;
BEGIN
REAL HS,VS,OS;
REF(REGION)RGN;
IF WORKLOG THEN

BEGIN OUTTEXT("### ");OUTTEXT(INAME);SETPOS(22);
OUTFTX(RH,2,8);OUTFIX(RV,2,8);OUTFIX(RO,2,8);

END;
INSPECT POOL DO

BEGIN

IF WORKLOG THEN
BEGIN SETPOS(50);OUTFIX(HC,2,8);OUTFIX(VC,2,8); -

OUTFIX(OC,2,8);OUTIMAGE;

END;
THE .001 TERM IS TO PREVENT NUMERIC ROUNDOFF ERRORS;

IF HC >= (RH - .001) THEN HS:-O.O ELSE HS:- RH - HC;
IF VC >- (RV - .001) THEN VS:-O.O ELSE VS:- RV - VC;
IF OC >- (RO - .001) THEN OS:-O.O ELSE OS:- RO - OC;
IF HS+VS+OS - 0.0 THEN

BEGIN
CANDO :- TRUE;
HC HC - RH;ENGRUSE(PRITY,1):-ENGRUSE(PRITY,1)+RH; V
VC :- VC - RV;ENGRUSE(PRITY,2):-ENGRUSE(PRITY,2)+RV;
OC OC - RO;ENGRUSE(PRITY,3):-ENGRUSE(PRITY,3)+RO;

END
ELSE
BEGIN
IF OS > 0 THEN

BEGIN
IF HS - 0 THEN

BEGIN
IF VS - 0 THEN

BEGIN INTEGER XHV;

XHV := (HC - RH) + (VC - RV);
IF XHV >- OS THEN

BEGIN
RH:-RH+OS*((HC-RH)/XHV);
RV:=RV+OS*((VC-RV)/XHV);

OS :0 0; RO :- OC;
END
ELSE
BEGIN
RH:=HC;RV:=VC;OS:=OS-XHV.
END;

END
ELSE
IF HC > (RH + OS) THEN

BEGIN RH:=RH+OS;RO:-OC;OS:=0;END
ELSE BEGIN OS:-OS-(HC-RH);RH:-HC;END;

B-136

END
ELS Ep IF VS - 0 THEN

BEGIN
IF VC > (RV + OS) THEN

BEGIN RV:-RV+OS ;RO:-OC;OS :-O;ENDv
ELSE BEGIN 0S:=0S-(VC-RV);RV:=VG;FND;

END;
END;

IF HS+VS+0S =0.0 THEN
BEGIN
CANDO :-TRUE;

.P- C HC- RH;ENGRUSE(PRITY,1):=ENGRUSE(PRITY,1)+RH;
VC VC- RV;ENGRUSE(PRITY,2):-ENGRUSE(PRITY,2)+RV;

OC OC - RO;ENGRUSE(PRITY,3):=ENGRUSE(PRITY,3)+RO;
END
ELSE

BEGIN
RGN :-MC.RGNLINK(COUN);
IF RGN.NOCANDO THEN%

BEGIN
9

ENDHG+VG+OG <- 0.0 THEN CANTDO:-TRUE;

r%, GANDO: =FALSE;
SLICE(1):-HS;SLICE(2):-VS;SLICE(3):=OS;

ELSE
IF RGN.GANDO(HS,VS,0S,PRITY,SLICE) THEN
BEGIN
CANDO :-TRUE;
IF HS '0 THEN

BEGIN HC:-HC - RH-;
ENGRUSE(PRITY,1) :-ENGRUSE(PRITY,1)+RH;END
ELSE

BEGIN
ENGRUSE(PRITY,1) :=ENGRUSE(PRITY,1)+HC;
HCG: 0.0;
END;

IF VS - 0 THEN
BEGIN VC:=VG - RV;
ENGRUSE(PRITY,2) :=ENGRUSE(PRITY,2)+RV;END
ELSE
BEGIN
ENGRUSE(PRITY,2) :=ENGRUSE(PRITY,2)+VG;

SV VG 0.0;
END;

IF OS - 0 THEN

BEGIN OC:-OG - RO;
2 ENGRUSE(PRITY,3) :=ENGRUSE(PRITY,3)+RO;END

ELSE
BEGIN
ENGRUSE(PRITY,3):=ENGRUSE(PRITY,3)+OC;
OG : 0.0;
END;

END

fB-137 A

ELSE
CANDO FALSE;

END;
END;

END

OTHERWISE
BEGIN
IF WORKLOG THEN OUTIMAGE;
RGN :- MC.RGNLINK(COUN);
IF RGN -/- NONE THEN

CANDO :- RGN.CANDO(RH,RV,ROPRITYSLICE)

ELSE
BEGIN

CANDO:-FALSE;SLICE(l):-HS;SLICE(2):-VS;SLICE(3):-OS;
END;

END;
END -- CANDO -- ;

JOBS :- NEW HEAD; ENGRS :- NEW HEAD;
ARRIVALS NEW HEAD; DAMLIST NEW HEAD;
FACLIS(l) FRUN NEW HEAD;
FACLIS(2) FBLDG NEW HEAD;
FACLIS(3) FPOL :- NEW HEAD;
FACLIS(4) :- FROAD NEW HEAD; . .

FACLIS(5) FUTIL NEW HEAD;
INDX :- 9;
ASSETS :- NEW REALTYTREE("INSTALLATION ASSETS",

" REQD ONHAND UNDERWAY");

END ** INSTALLATION **

Figure B-139

uu. Class AIRBASE.

i. Purpose. This subCLASS of INSTALLATION expands the number of
facility categories to better represent the results and intentions of enemy
attacks against an AIRBASE. A parameter is also added to indicate those
airbases that are collocated (this designation will effect which
country/service has possession and therefore responsibility for major surface
and operational FACILITYs.

B-138

"'-'S

- .V I

ii. Class AIRBASE Skeleton.

Parameters and Attributes for Class AIRBASE

I CLASS: AIRBASE I PREFIX: INSTALLATION

SPARAMETERS: none

VARIABLE ATTRIBUTES: I
FRAMES HEAD not used

COLOC AIRBASE pointer to a collocated AIRBASE

--- I
PROCEDURE ATTRIBUTES: I

I TGTSELECT similar to procedure defined in
prefix CLASS but uses more

facility catgories.
I GETS assigns new FACILITYs to the %

expanded category set array f

Figure B-140

iii. Listing.

Listing of Class AIRBASE

INSTALLATION CLASS AIRBASE;
BEGIN
REF(HEAD) ARRAY FACLISX(6:9);
REF(HEAD)FRAMES; REF(AIRBASE)COLOC;

REF(FACILITY) PROCEDURE TGTSELECT(K); INTEGER K;

NEEDS REVISION
BEGIN
IF K - 0 THEN K :- DISCRETE(TGTDEFAULTS(INDX).VECTOR,UTSEL);

IF (IF K LE 5 THEN FACLIS(K).EMPTY ELSE FACLISX(K).EMPTY) THEN
BEGIN
INTEGER ALTGT; "
ALTGT :- 3;
WHILE ALTGT > 0 DO

BEGIN
K :- DISCRETE(TGTDEFAULTS(INDX).VECTOR,UTSEL);

IF K LE 5 THEN
BEGIN
IF FACLIS(K).EMPTY THEN ALTGT :- ALTGT -1

ELSE
BEGIN
TGTSELECT :- RANDPICK(FACLIS(K));

B-139

ALTGT :- 0;
END;

END
ELSE
IF FACLISX(K).EMPTY THEN ALTGT ALTGT -1

ELSE
BEGIN
TGTSELECT :- RANDPICK(FACLISX(K)); U'

ALTGT :- 0;
END;

END;
END
ELSE
TGTSELECT IF K LE 5 THEN RANDPICK(FACLIS(K)) %

ELSE RANDPICK(FACLISX(K));

END -- TGTSELECT -- ;

PROCEDURE GETS(F,CATC); REF(FACILITY) F;TEXT CATC;
BEGIN
IF F IN BUILDING THEN

BEGIN
IF CATC.SUB(1,2) - "42" THEN

F.INTO(THIS INSTALLATION QUA AIRBASE.FACLISX(8))
ELSE IF CATC - "141D" THEN
F.INTO(THIS INSTALLATION QUA AIRBASE.FACLISX(7))
ELSE F.INTO(FBLDG);

END
ELSE IF F IN PETRO THEN F.INTO(FPOL)

ELSE IF F IN UTILITY THEN
BEGIN
IF CATC.SUB(1,2) - "84" THEN

F.INTO(THIS INSTALLATION QUA AIRBASE.FACLISX(9))
ELSE F. INTO(FUTIL);

END
ELSE IF F IN TRANSPO THEN F.INTO(FROAD)

ELSE IF F IN SURFACE THEN
BEGIN %
IF CATC.SUB(1,3) - "111" THEN F.INTO(FRUN)
ELSE F.INTO(THIS INSTALLATION QUA AIRBASE.FACLISX(6));

END;
END -GETS

FRAMES :- NEW HEAD;
BEGIN INTEGER I; FOR 1:=6 STEP 1 UNTIL 9 DO FACLISX(I):-NEW HEAD; END;
INDX 2;
END ** AIRBASE **

Figure B-141

B-140

vv. Class AIRPOD.

i. Purpose. This is a subCLASS of AIRBASE that implements additional

procedues associated with air ports of debarkation (APODs). When INSTALLATIONs
are created by SEAC (see procedure BUILDMAP), airfields to be used as APODs and
any associated service reception centers are identified.

ii. Class AIRPOD Skeleton.

Parameters and Attributes for Class AIRPOD

ICLASS: AIRPOD jPREFIX: AIRBASE

PARAMETERS: none

I VARIABLE ATTRIBUTES:
RECTRS GEOLOC[] indicates those CENTERs that are

used for reception centers

--

PROCEDURE ATTRIBUTES:

GEOCTRS checks list of candidate centers
for valid service CENTER entry.-

Figure B-142

N, iii. Listing. ".

Listing of Class AIRPOD

AIRBASE CLASS AIRPOD;

BEGIN
REF(GEOLOC) ARRAY RECTRS(1:4); '
PROCEDURE GEOCTRS(T);TEXT T;

BEGIN INTEGER I,S;
I :-l;

WHILE I LE T.LENGTH DO

IF T.SUB(I,l) = " " THEN
I :-I+ 1
ELSE
BEGIN
S :- SVCSCK(T.SUB(I,I));
IF S - 0 THEN %'

BEGIN SETPOS(10); %
OUTTEXT(" APOD SVC ERROR IN ")"
OUTTEXT(T); OUTIMAGE;
I :- I + 6;
END
ELSE K

BEGIN 4

B.

B- 141

RECTRS(S) :- GEOTAB.FIND(T.SUB(I+2,4)); -. '
IF RECTRS(S) - NONE THEN ,

BEGIN
OUTTEXT("--APOD--RECEP CTR UNDEFINED ");
OUTTEXT(T.SUB(I,6)) ;OUTIMAGE;
END;

I :-I + 6;
END;

END;

END -- GEOCTRS -- ;
END ** AIRPOD **,

Figure B-143 -

ww. Class CAMP.

i. Purpose. This CLASS is used primarily for Army installations that
do not fall within some of the other more specialized INSTALLTION CLASSes.

ii. Class CAMP Skeleton.

Parameters and Attributes for Class CAMP

I CLASS: CAMP I PREFIX: INSTALLATION

PARAMETERS: none "

VARIABLE ATTRIBUTES: none -

I-- ---
I PROCEDURE ATTRIBUTES: none 9

"-'

Figure B-144

iii. Listing.

Listing of Class CAMP

INSTALLATION CLASS CAMP; CE
BEGIN' .
INDX :-3;

END;

Figure B-145 ii

B-142

. , " -, ' -% .'m, m. "%. " -, "I '' " " -, -. " '- "' " m',j @.. .' , " ' " " " °, w,
"

N le

xx. Class CENTER.

i. Purpose. This type of installation is a subCLASS of CAMP and is

specifically intended to emulate installations that are used for unit and K
replacement personnel that are moving into and through the COMMZ. When a
unit's personnel arrive in theater they generally move first to a reception

center. They will then either move to a COMMZ location, or if in a combat unit
to a staging base to marry up with their equipment before moving on to forward
areas in the theater. To reflect the facility requirements at these
installations, SEAC distinguishes between units that are merely passing through .

and those units that are likely to be permanently assigned. This is to more
accurately reflect the reduced facility requirments to be attributed to the
deploying units.

ii. Class CENTER Skeleton.

Parameters and Attributes for Class CENTER

CLASS: CENTER PREFIX: CAMP

I PARAMETERS: none

VARIABLE ATTRIBUTES: * -

TEMPOP real number of personnel in units that -
do not stay at the CENTER

MAXTEMPOP real maximum tmporary population up to -
that point in time

HOLDING HEAD set of units temporarily at the ,
CENTER

RSDUNITS HEAD set of temporary units that arrived ,
at the CENTER that day

PROCEDURE ATTRIBUTES:
CHECKIN processes incoming units (both

permanent and temporary) I
STATUS prints permanent and temporary I

troop population figures -

Figure B-146

iii. Listing.

.5l

B- 143

e- ..

.5.'5

Listing of Class CENTER

CAMP CLASS CENTER;
e

BEGIN
REAL TEMPOP,MAXTEMPOP;
REF(HEAD) HOLDING,RSDUNITS;

PROCEDURE CHECKIN;

BEGIN -

REF(AUNIT)A,T; REAL rRMS; ,

FOR A :- RSDUNITS.FIRST WHILE A =/= NONE DO
BEGIN TEMPOP :- TEMPOP + A.MEN; A.INTO(HOLDING); END; .. .

A :- HOLDING.FIRST;
WHILE A =/= NONE DO

IF A.TIMEOUT <= TIME THEN
BEGIN
T :- A.SUC;
TEMPOP := TEMPOP - A.MEN;
IF A.DEST - NONE THEN

A. OUT
ELSE
IF A.FWD THEN

BEGIN ".
IF A.DEST IS CENTER THEN

BEGIN

A.TIMEOUT :- TIME + STAGETIME;
A.INTO(A.DEST QUA CENTER.RSDUNITS);

A.DEST :- NONE;
END_.,' 4 .

ELSE
A. INTO(A.DEST.ARRIVALS);

END
ELSE
A. INTO(A.DEST.ARRIVALS); r.

A:- T;
END
ELSE 4 .

A :- A.SUC;

A :- ARRIVALS.FIRST;
WHILE A =/= NONE DO

BEGIN

DETRQMT(A.UTC,i.O);
PERMS := PERMS + A.MEN;

A.OUT;
A :- ARRIVALS.FIRST;

END;
DETRQMT("PEOPLE",PERMS);
POPULATION := POPULATION + PERMS; 4

IF TEMPOP > MAXTEMPOP THEN
BEGIN

DETRQMT("RS&D",TEMPOP-MAXTEMPOP);
MAXTEMPOP :- TEMPOP;

B-144 i

END;
END - CHECKIN %

PROCEDURE STATUS (ASTA, ESTA,TSTA) ; BOOLEAN ASTA, ESTA, TSTA;

BEGIN REF(TASK) TSK; %
OUTTEXT (" -- [");•OUTTEXT (INAME);•,$

OUTCHAR('/');OUTINT(COUN,1);OUTCHAR('/');OUTINT(SRVC,1);OUTCHAR('/');

OUTTEXT("] STATUS REPORT.") ;SETPOS(50) ;OUTTEXT(" POPULATION:");
OUTFIX(POPULATION,0,7); OUTTEXT(" MAX RS&D:"); OUTFIX(MAXTEMPOP,0,7);
OUTTEXT(", SORTIES:") ;OUTINT(SORTIESRECVD, 5);
OUTTEXT(", SPF ATTACKS:") ;OUTINT(RCATK,5); OUTIMAGE;

IF ASTA THEN ASSETS.TRAVERSE;
INOUTTEXT(" ENGR UNITS") ;OUTINT(ENGRS.CARDINAL,6);

IF ESTA AND POOL -/- NONE THEN POOL.TALLY(ENGRS,TRUE);
OUTTEXT(" TASKS") ;OUTINT(JOBS.CARDINAL.6);

IF TSTA THEN
BEGIN
TSK :- JOBS.FIRST;
IF TSK =- NONE THEN OUTIMAGE

ELSE
WHILE TSK =/- NONE DO BEGIN TSK.DUMP; TSK :- TSK.SUC; END;

END
ELSE
OUTIMAGE;

END -- STATUS -- ;

t, HOLDING :- NEW HEAD;RSDUNITS :- NEW HEAD;
END ** CENTER **;

Figure B-147

yy. Class PORT. 0

i. Purpose. As the name suggests this INSTALLATION subCLASS is used
to define ports. (During the first application of SEAC, ports were not modeled
to the same operational detail as were for example AIRBASEs. Future pr

v.. applications would no doubt place more emphasis on ports and demand that more

detail be included regarding their special facility needs.) 0

ii. Class PORT Skeleton.

%

B- 145 U
.5* 5

0%, %

N"

Parameters and Attributes for Class PORT '

CLASS: PORT I PREFIX: INSTALLLATION ,

I PARAMETERS: none I0

I VARIABLE ATTRIBUTES: none

PROCEDURE ATTRIBUTES: none

Figure B-148

iii. Listing.

Listing of Class PORT 5

INSTALLATION CLASS PORT;

INDX := 4;

Figure B-149

zz. Class SEAPOD.

i. Purpose. Just as AIRBASE had a subCLASS to represent APODs, PORT
has a subCLASS, SEAPOD, that can be used to designate reception centers for ,p.'

units that are arriving at the PORT, but are moving elsewhere in the theater.

ii. Class SEAPOD Skeleton.

Parameters and Attributes for Class SEAPOD '

I CLASS: SEAPOD I PREFIX: PORT I ' 7

I PARAMETERS: none I

I VARIABLE ATTRIBUTES:
RECTRS GEOLOC[]I

--- I
I PROCEDURE ATTRIBUTES:
I GEOCTRS

Figure B-150

iii. Listing.

B-146

' ~ ~ ~ ~ ~ ~ ~ 5 W~ 5 \ ~ S~W~*% ..~

j%

Listing of Class SEAPOD

PORT CLASS SEAPOD;
BEGIN 0
REF(GEOLOC) ARRAY RECTRS(I:4);

Nw-

PROCEDURE GEOCTRS(T);TEXT T;
BEGIN INTEGER I,S;
I -1i;

WHILE I LE T.LENGTH DO

IF T.SUB(I,l) = " " THEN
II +1

ELSE
BEGIN
S :- SVCSCK(T.SUB(I,I));
IF S - 0 THEN

BEGIN SETPOS(10);
OUTTEXT(" SPOD SVC ERROR IN ");

OUTTEXT(T); OUTIMAGE;

I : I + 6;
END
ELSE
BEGIN

RECTRS(S) :- GEOTAB.FIND(T.SUB(I+2,4));
IF RECTRS(S) - NONE THEN

BEGIN
OUTTEXT("--SPOD--RECEP CTR UNDEFINED ");
OUTTEXT(T.SUB(I,6)) ;OUTIMAGE;

END; 0

I := I + 6;
END;

END;
END -- GEOCTRS -

END ** SEAPOD **,

Figure B-151

aaa. Class ADA. ,

i. Purpose. This INSTALLATION subCLASS is intended to model air

defense artillery sites. In the first application of SEAC, ADA sites were
presumed to be permanent hardened locations that did not move. This was an

artifact of the scenario used during SEAC's development. To the extent that
future guidance foresees a different posture for ADA sites, this CLASS would

have to be changed.

ii. Listing.

B-147

Listing of Class ADA

INSTALLATION CLASS ADA;
INDX :- 5;

Figure B-152

bbb. Class HOSPITAL.

i. Purpose. (Hospital facilities are currently treated as belonging to
the major INSTALLTION as opposed to being defined as a separate INSTALLATION.)

ii. Listing.
Listing of Class HOSPITAL

INSTALLATION CLASS HOSPITAL;
INDX :- 6; V

Figure B-153

ccc. Class DEPOT.

i. Purpose. DEPOTs currently contain no specialized procedural or
data structure attributes beyond those derived from the prefix CLASS.

ii. Listing.

Listing of Class DEPOT

INSTALLATION CLASS DEPOT;
INDX :- 7;

Figure B-154

ddd. Class ELEC.

i. Purpose. This CLASS is intended to represent the various electronic
sites (radar, communications, etc.) that would be in the COMMZ. ELEC currently
contains no specialized procedural or data structure attributes beyond those
derived from the prefix CLASS. The factor file, however, does contain an entry
for ELEC to assure that there are some baseline facilities (because assets seem
to be frequently missing for smaller installations).

ii. Listing.

Listing of Class ELEC

INSTALLATION CLASS ELEC; e
INDX 8; NI

Figure B-155

B-148
!~.4

%

7. Processes. The previous section of this annex described the many CLASSes

used in SEAC which are passive, i.e. they have no internal ability to initiate

actions. The PROCCESes described below (along with the main program) provide

direction and initiate actions among themselves and all other objects in the

runtime environment. Several of the CLASSes below refer the reader to more

elaborate descriptions that appear in the main paper--further testament to

their controlling function within SEAC.

a. Class RSD.

i. Purpose. This PROCESS controls the dispositon of US units in the

theater. It distinguishes between units entering the theater and those forward

deployed; it identifies (to the degree that it can) those units that deploy to

the COMMZ, those that deploy to the FCZ, and those that go to reception centers

and then to COMMZ staging bases but are probably moving to the FCZ. (See the b

main paper section on Reception, Staging & Deployment.) An accurate

representation of RS&D was s design goal of SEAC because of the inability of

other automated planning systems to adequately treat unit movement through the

theater..

ii. CLASS RSD Skeleton,

.

IR

B-149

'14

Parameters and Attributes for Class RSD

L
CLASS: RSD PREFIX: PROCESS ,

PARAMETERS: e

ARVFILE text name of the file containing the I
Troop file

ECHO boolean if true then input record is writ-
ten into the log file

VARIABLE ATTRIBUTES: I
TRP INFILE TROOP input file object I
PS INSTALLATION POD INSTALLATIONs for units with I

POD -/- DEST
DS INSTALLATION destination INSTALLATION for the A

unit

P INSTALLATION used to find POD INSTALLATIONs
R INSTALLATION not used
S INSTALLATION used for destination INSTALLATIONs
PG GEOLOC the GEOLOC object associated with •

POD
C CENTER reception center defined for the I.

unit's POD and service
CFAULT CENTER default (army) reception center
ASVC character character variable from SVC
TP real TIMEPOD's real variable equivalent
USTR real STR's real variable equivalent I
ISVC integer SVC's integer variable equivalent .

UTC text unit type code field on TROOP .*
FRQN text force requirements number field I
POD text port of debarkation geoloc field
TIMEPOD text time arriving at POD field
DEST text destination geoloc field ' -

STR text strength field
SVC text service indicator field -

--- I
PROCEDURE ATTRIBUTES: I
ERROR routine that formats RSD errors

---- --- --- --- -- - - --- - - -

Figure B-156 ."'

B -1'5

B-150 .

iii. Listing.

Listinz of Class RSD.

PROCESS CLASS RSD(ARVFILE,EGHO); j... RSD..
TEXT ARVFILE;BOOLEAN ECHO;
BEGIN
REF(INFILE) TRP; REF(INSTALLATION) PS,DS,P,R,S; REF(GEOLOC) PG;
REF(CENTER) C,CFAULT; CHARACTER ASVC; REAL TP,USTR; INTEGER ISVC;
TEXT UTC,FRQN,POD,TIMEPOD,DEST,STR,SVG;

PROCEDURE ERROR(MSG); TEXT MSG;
BEGIN SETPOS(lO);
OUTTEXT(". .RSD.. ") ;OUTTEXT(MSC);
OUTTEXT(" FOR ENTRY -- ");OUTTEXT(TRP.IMACE.SUB(l,47));
OUTIMACE;

N END;

TRP :-NEW INFILE(ARVFILE);
TRP.OPEN (BLANKS (80))
TRP. INIMACE;
UTC TRP.IMACE.SUB(19,5); FRQN :-TRP.IMACE.SUB(7,5);
POD :-TRP.IMACE.SUB(37,4); TIMEPOD :-TRP.IMAGE.SUB(41,3);
DEST :-TRP.IMiAGF.SUB(24,4); STR :-TRP.IMAGE.SUB(31,6);
SVC :-TRP.IMAGE.SUB(47,1);

WHILE NOT TRP.ENDFILE DO
BEGIN
TP :-TIMEPOD.SUB(l,3).CETREAL;
ISVC SVCSCK(SVC.SUB(l,l));
ASVC :-SVC.SUB(l,1).CETCHAR;
USTR :-STR.SUB(1,6).CETREAL;
IF TIME <- TP THEN PASSIVATE;0
IF ECHO THEN BEGIN OUTTEXT(">TRP:") ;OUTTEXT(TRP. IMAGE) ;OUTIMACE;END;
IF TP < 0.0 THEN

BEGIN
DS :- MATCH(GEOTAB.FIND(DEST) ,XUS,ISVC);
IF DS - NONE THEN

ERROR("IN PLACE UNIT DEST MISSING")
ELSE
NEW AUNIT(UTC,ASVC,FALSE,USTR,TIME,NONE) .INTO(DS.ARRIVALS);

END
ELSE
IF DEST = POD THEN

BEGIN
P: -MATCH(GEOTAB.FIND(DEST) ,XUS,ISVC);%
IF P == NONE THEN

ERROR("POD(=-DEST) NOT FOUND")
ELSE
NEW AUNIT(UTC,ASVC,FALSE,USTR,TIME,NONE).INTO(P.ARRIVALS);

END
ELSE
BEGIN

B-151

PS- C :- CFAULT :-NOE
PG GEOTAB.FIND(POD);
IF PG - NONE THEN

ERROR("POD GEOLOC NOT FOUND")
ELSE
BEGIN

P :- PG.SITES.FIRST;
WHILE P -/- NONE DO

BEGIN
IF P IS AIRPOD OR P IS SEAPOD THEN PS :-P;

P :- P.SUC;
END;

INSPECT PS .

WHEN AIRPOD DO
BEGIN
C :- MATCH(RECTRS(ISVC),XUS,ISVC);
IF C -NONE AND ISVC >XARY THEN

CFAULT: -MATCH(RECTRS(XAR4Y) ,XUS ,XARMY);
END

WHEN SEAPOD DO
BEGIN
C :- MATCH(RECTRS(ISVC;),XUS,ISVC);
IF C -= NONE AND ISVC 0> XARMY THEN

CFAULT: -MATCH(RECTRS(XARMY) ,XUS,XARMY);
END

OTHERWISE ERROR("POD NOT DEFINED AS APOD/SPOD");
IF C - NONE THEN

BEGIN
ERROR("NO SERVICE RECEPTION CTR");
IF CFAULT -=NONE THEN

BEGIN
ERROR(" AA ARMY CTR SUBSTITUTED");
C :- CFAULT;

END; %
END; S

IF C -/- NONE THEN
BEGIN ~
S :- MATCH(GEOTAB.FIND(DEST),XUS,ISVC);
IF S - NONE THEN

ERROR("DEST GEOLOC NOT DEFINED(ASSUME FCZ)");
IF DEPLOY(FRQN) THEN

BEGIN
NEW AUNIT(UTC,ASVC,TRUE,USTR,RECEPTIME+TIME,S)

.INTO(C.RSDUNITS);
IF NOT S IS CENTER THEN

ERROR("DEPLOYING DEST IS NOT STAGING CTR");
END
ELSE

EN;NEW AUNIT (UTC ,ASVC, FALSE, USTR, %l

RECEPTIME+TIME,S) .INTO(C.RSDUNITS);
END; ;

END;

TRP. INIMAGE;

B-152

END;

pTRP.CLOSE;
END ** RSD **;

Figure B-157

q b. Class CHANGE.

i. Purpose. This PROCESS permits the user to do three things: to
account for possible COMMZ expansion or contraction; to indicate known
facility requirements (projects) that the usual factors would not generate;
and most importantly to assign, move, and change engineer units in the COMMZ.
Changes to the areas considered within the COMMZ are handled by toggeling
MAPCELL variable AOR; if set false then the MAPCELL is not considered in
normal requirements and capabilities calculations. Projects can be inserted
into either INSTALLATIONs or MAPCELLs and would be things like pipelines,
special port facilities, and other facilities planners identify. The
manipulation of engineer units was another design goal within SEAC. Previous
models of COMMZ engineering had been inflexible, units committed to an area
remained there for the duration of the scenario. Many times there would be an
abundance of engineers in one area (eg., base complex in CESPG) and scarcity in
an adjacent area with no mechanism to share. SEAC through its regionalization
of the theater and the explicit treatment of engineer units (unit identities

are preserved) through entries in the Order file allows better control of

capability.

ii. Class CHANGE Skeleton.

Parameters and Attributes for Class CHANGE

I CLASS: CHANGE I PREFIX: PROCESS

I PARAMETERS: I
I ORDFYL text name of file containing engineer

unit & project directions I
I ECHO boolean if true then input record is writ-

ten into the log file

I VARIABLE ATTRIBUTES:
I'ORDERS INFILE input file object for Orders

OTYM text effective time of order field
OTYPE text type of record: mapcell, project, I

or engineer unit order
OCELL text mapcell

CELLVAL text 'T' if mapcell is in AOR, else 'F'
I OUTC text engineer UTC field

ORDER text text buffer for ORDERS entries
ONAT text nationality field
OSVC text service field

B-153

MC - - S 4.4.hf t -' t 4. -

OCAT text facility category code I
I OQUAN text quantity field

OUOM text unit of measure field --

OTO text destination field (GEOLOC or
MAPCELL index) I

OFROM text location field (GEOLOC or MAPCELL
INDEX) I

OSTR text strength field
TYM real OTYM real variable equivalent "

I AMT real OQUAN real variable equivalent I
UNITS real ** not used ** -
MIX integer OCELL integer variable equivalent
RIX integer OTO/OFROM integer equivalent I
NAT integer ONAT integer equivalent I
SVC integer OSVC integer equivalent

RGN REGION ** not used **
R REGION reference to object with RIX index I
INX INSTALLATION reference for unit movements -
INS INSTALLATION reference for project assignments %
CFAC FACILITY ** not used ** %'.
G GEOLOC reference to object that OTO I

indicates as a destination
EU ENGRUNIT references a new or existing I

object I'"
EN ENGRCAP references entry in ENGRCAP tree -

for unit with OUTC id
CMP COMPO ** not used ** S

P PROPERTY references object in installation'sI
ASSET tree for required category I

.4'

code
CAT CATCOD identifies object in CATREE with .4'

OCAT category code I'
--
PROCEDURE ATTRIBUTES: j
ERROR formats CHANGE error messages

Figure B-158

B-154

iii. Listing.%

Listing of Class CHANCE

PROCESS CLASS CHANGE(ORDFYL,ECHO);
TEXT ORDFYL;BOOLEAN ECHO;
BEGIN
REF(INFILE)ORDERS;
TEXT OTYM, OTYPE ,OCELL, CELLVAL, OUTC ,ORDER;
TEXT ONAT ,OSVC ,OCAT ,OQUAN ,OUOM ,OTO ,OFROM ,OSTR;
REAL TYM,AMT,UNITS; INTEGER MIX,RIX,NAT,SVC;
REF(REGION)RGN.R; REF(INSTALLATION)INX, INS; REF(FACILITY)CFAC;
REF(GEOLOC)G; REF(ENCRUNIT)EU; REF(ENGRCAP)EN;
REF(COMfO)CMP; REF(PROPERTY)P; REF(CATCOD)CAT;

PROCEDURE ERROR(T);TEXT T;
BEGIN
OUTTEXT(". .CHANGE ERROR. .(");OUTTEXT(T);
OUTTEXT(l) -- ") ;OUTTEXT(ORDER) ;OUTIMAGE;
END -- ERROR--

ORDERS NEW INFILE(ORDFYL);
ORDER :-BLANKS(80);

ORDERS .OPEN(CORDER);
ORDERS. INIMAGE;%

OTYM :-ORDER.SUB(l,5); OTYPE :-ORDER.SUB(10,1);
ONAT :-ORDER.SUB(12,1); OSVC :-ORDER.SUB(14,1);

OCELL :-ORDER.SUB(16,5); CELLVAL :- ORDER.SUB(26,l);
OSTR:-ORDER.SUB(21,4);

OUTC :-ORDER.SUB(16,5);OFROM :-ORDER.SUB(26,4);OTO :-ORDER.SUB(31,4);

OCAT :-ORDER.SUB(16,4);OQUAN :-ORDER.SUB(22,8);OUOM :-ORDER.SUB(36,2);

WHILE NOT ORDERS.ENDFILE DO
BEGIN
TYM OTYM.SUB(l,5).GETREAL;
NAT COUNCK(ONAT.SUB(l,l));
SVC SVCSCK(OSVC.SUB(l,l));
IF TYM <- TIME THEN

BEGIN
IF ECHO THEN BEGIN OUTTEXT(">EXO:") ;OUTTEXT(ORDER) ;OUTIMAGE;END;
IF OTYPE - "U" THEN -

BEGIN
EU :- NONE;
IF OFROM - "THEN

BEGIN .

EN :- ECAPTAB.FIND(OUTC);
IF EN -/- NONE THEN

EU :- NEW ENGRUNIT(EN,OSTR.SUB(1,4).GETREAL,TYM) '.
ELSE
ERROR("UNIDENTIFIED ENGR UTC')

END

B-155

ELSE
IF LETtER(OFROM.SUB(1,4) .GETGHAR) THEN

BEGIN
INX:-MATCH(GEOTAB.FIND(OFROM) ,NAT,SVC); .

IF INX - NONE THEN ERROR("FROM INSTAL NOT FND/MTGHD")
ELSE EU :- GET(OUTC,INX.ENGRS);

END .

ELSE
BEGIN
EN: -ECAPTAB.FIND(OUTC);
IF EN -/- NONE THEN

BEGIN

RIX:-OFROM.SUB(1,4) .GETINT;
R :- RGNSTRUG(EN.NATION).LOCRGN(RIX);
IF R -- NONE THEN

ERROR("FROM REGION NOT FOUND")
ELSE

EU: -GET(OUTC,R.ENGRASSETS);
END;

END;
IF EU -- NONE THEN

ERROR("UNIT NOT IN FROM-LOG")
ELSE

IF OTO - THEN -

EU .OUT
ELSE
IF LETTER(OTO.SUB(1,4) .GETCHAR) THEN

BEGIN

G :- GEOTAB.FIND(OTO); 1

INX: -MATCH(G,NAT,SVG);
IF INX - NONE THEN

BEGIN
ERROR("TO INSTAL NOT FOUND/MATCHED");
IF EU.UTCMSTR.SERVIGE - XARMY THEN

BEGIN

IF G -/- NONE THEN
BEGIN

ERROR("--.. .PUT ARMY ENGR INTO 3 .

REGION");
EU.ITO(.CEL.RGLINKNAT

EU.ITO(GGEL.ERGNLIK(NTS) :

END .NRSES;* p

ELSE
ERROR(... .GEOLOG NOT DEFINED"); ~ .S

END;
END
ELSE

EU. INTO(INX.ENGRS);

ENDI
BEGIN
RIX:=OTO.SUB(1,4) .GETINT; -

R : - RGNSTRUG(EU.UTGMSTR.NATION) .LOGRGN(RIX);
IF R -- NONE THEN *Oii

B-156

ERROR("TO REGION NOT FOUND")
ELSE
EU.INTO(R.ENGRASSETS);

END;END

ELSE

IF OTYPE = "M" THEN
BEGINN
MIX:=OCELL.SUB(1,5).GETINT;
AREAS(MIX).AOR := IF CELLVAL = "T" THEN TRUE ELSE FALSE;
END
ELSE

IF OTYPE = "P" THEN
BEGIN
AMT:= OQUAN.SUB(i,8).GETREAL;
IF LETTER(OTO.SUB(I,4).GETCHAR) THEN

BEGIN
G :- GEOTAB.FIND(OTO);
INS :- MATCH(G,NAT,SVC);
IF INS == NONE THEN ERROR("EX-TASK GEOLOC/SERVICE")

ELSE
BEGIN
P :- INS.ASSETS.FIND(OCAT);
IF P -- NONE THEN

BEGIN
P :- NEW PROPERTY(OCAT);
IF P.XREF(I-NS) THEN P.RANK(INS.ASSETS);

END,

ELSE ERROR("COMPONENT NOT FOUND");
END;

END
ELSE

BEGIN
MIX :- OTO.SUB(1,4).GETINT;
IF AREAS(MIX) -/- NONE THEN

BEGIN
IF NOT AREAS(MIX).HASA(OCAT,NAT,SVC,

OUOM,AMT ,XISTD)

THEN
ERROR(" MSR ASSET REJECTED");

END
ELSE
ERROR(" MAPCELL INDEX");

.END;
END

ELSE ERROR(" BAD ORDER FORMAT ");

ORDERS.INIMAGE;
END
ELSE

PASSIVATE;
END;

ORDERS. CLOSE;
OUTTEXT("### ORDERS FILE HAS BEEN CLOSED");

B-157

I

OUTIMAGE; .4

END *** CHANGEr ***;

I

Figure B-159

C. Class MISSION. "

i. Purpose. A MISSION object is generated for each air attack
generated by MISGEN. It indicates which planes are making the attack (GROUP),
where they came from (ORIGIN) and where they also will return to, and what is

being attacked (TGT). Along the way planes may be damaged or destroyed, and
may or may not actually attack the target. The original concept for MISSION .

also included a feature to measure flight time to and from the target; this
was to better measure turnaround time and the ability of the enemy to meet the

sortie rates projected by threat assessments. The timing feature was not S
implemented in the first version of SEAC because of circumstances in the 4
controlling scenario. (See the description of the AIR WAR in the main paper.)

ii. Class MISSION Skeleton. '

%

iI

-.-

N
B-158

Parameters and Attributes for Class MISSION. Xr

i CLASS: MIS ;ION I PREFIX: PROCESS

PARAMETERS:,i"'
MISCODE integer sequential number of the mission

TGT INSTALLATION target

TGTNAME text name of the target
ORIGIN NKAIRBASE home location of the group
SUMX integer[] vector used to record cumulative

sortie information

VARIABLE ATTRIBUTES:
GROUP HEAD set containing planes on mission %
KILLED HEAD planes that are killed are trans-

ferred from GROUP to this set "

DAMAGED HEAD damaged planes are put in this set
P PLANE reference to GROUP member
TEMP PLANE used to track objects in GROUP
TOTBOMBS integer ** not used **

AIMAT integer ** not used **

Iinteger indicates type index of PLANE
FLTIME assumed to be 0 (i.e., not used)

PROCEDURE ATTRIBUTES:

ASSIGN initializes MISSION sets

Figure B-160

iii. Listing. :%

Listing of Class MISSION.

PROCESS CLASS MISSION(MISCODE,TGT,TGTNAME,ORIGIN,SUMX); l MISSION;
REF(INSTALLATION)TGT;TEXT TGTNAME;INTEGER ARRAY SUMX;

REF(NKAIRBASE)ORIGIN;

INTEGER MISCODE; J,
BEGIN
REF(HEAD)GROUP,KILLED,DAMAGED;REF(PLANE)P,TEMP;

Ir% INTEGER TOTBOMBS,AIMAT,I;
REAL FLTIME; "

PROCED ASSIGN; %
;5 BEGIN GROUP :- NEW HEAD; KILLED .- NEW HEAD; DAHAGED :- NEW HEAD;

END -- ASSIGN -- ;

HOLD(FLTIME);

B-159
4P

P GROUP.FIRST;
WHILE P -/- NONE DO

BEGIN
I :-P.TY..E.PID;
IF DRAW(liIT,UHIT) THEN

BEGIN
IF DRAW(PBEFOR,UBEFOR) THEN

BEGIN
TEMP :-P;
P :-P.SUC;
IF DRAW(PKILL,UKILL) THEN

BEGIN TEMP.INTO(KILLED); SUMX(I,3):=SUMY7(I,3)+l; END

EGIN TEMP.INTO(DAMAGED);SUMX(I,5):-SUMX(I,5)+l;END; I

END
ELSE
BEGIN
IF DRAW(PSUC,USUC) THEN '

BEGIN P.ATTACK(TGT);SUMX(I,7):=SUMX(I,7)+1;END;
TEMP :-P;
P :-P.SUC;
IF DRAW(PKILL,UKILL) THEN

BEGIN TEMP.INTO(KILLED);SUMX(I,4):=SUMX(I,4)+l;END
ELSE
BEGIN TEMP.INTO(DAMAGED);SUMX(I,6):=SUMX(I,6)+1;END;

END;
END
ELSE
BEGIN
IF DRAW(PSUC,USUG) THEN

BEGIN P.ATTAGK(TGT);SUMX(I,7):=SUMX(I,7)+1;END;
P :-P.SUC;
END;

END; w
HOLD(FLTIME);
OUTTEXT("MISSION REPORT 1') ;OUTINT(MISCODE,4) ;SETPOS(POS+3);
OUTTEXT(ORIGIN.ID);
OUTTEXT("l TO 11);OUTTEXT(TGTNAME);
OUTINT (GROUP. CARDINAL, 10);
OUTINT(KILLED.CARDINAL, 10);

OUTINT (DAMAGED. CARDINAL,10); OUTIMACE;
P :-GROUP.FIRST;
WHILE P -/- NONE DO

BEGIN
TEMP :-P.SUG;
IF P.TYPE IS BMBR THEN

P. INTO(ORIGIN.BOMBERS)
ELSEIl
P. INTO(ORIGIN.FIGHTERS);

P :-TEMP;
END; %

P DAMAGED.FIRST;
WHILE P -/- NONE DO

BEGIN

B-160

)

P.REPAIRTIME :- TIME + NEGEXP(XREP,UREP);
P.INTO(ORIGIN.REPAIR);
P :- DAMAGED.FIRST;
END;

END ** MISSION **;

Figure B-161

d. Class MISGEN.

i. Purpose. This CLASS generates air attacks (instances of CLASS
MISSION) based on instructions read from an external air threat file. The
file contains scenario data collected fiom applicable threat assessments which
provides a likely threat attack strategy. Entries in the file give: time,
planes, home field, target location, and, optionally, facility target
priorities. It must be emphasized that threat attacks follow the preplanned %
directions found in the file. SEAC does not model enemy targeting, thus the
success or failure of prior attacks does not influence how current attacks are
developpd. The file directives control.

ii. Class MISGEN Skeleton.

NN

B-161

N IN i& e % .; A %.

Parameters and Attributes for Class MISGEN.

I CLASS: MISGEN I PREFIX: PROCESS

I PARAMETERS:
TMSNS text name of file containing the air

threat i
I ECHO boolean if true then input record is writ- j

ten into the log file I

VARIABLE ATTRIBUTES:
ORD text input buffer for air threat file I
DAY text field for day of attack
STRIKE text field for hour of attack
TGTLOC text target label (geoloc) field
ORIGIN text home base field (geoloc or other) IBMRS text bombers in mission field
FBRS text fighter bombers in mission field

RDY text operational readiness field ,
TGT INSTALLATION target selected I
ORI NKAIRBASE threat airbase source for mission

M MISSION references object I
WAVE HEAD MISSIONs are collected in Lhis set "' .
TGTGEO GEOLOC reference to target's GEOLOC I
ORDERS INFILE input file object for air threat j
MSNTGTS TGTPREF reference to facility targeting I

directive I
AIRSUM integer[] array to store summary statistics
NOB integer BMRS integer variable equivalent I
NOF integer FBRS integer variable equivalent I
BAVAIL integer count of bombers available for thc "I

MISSION

FAVAIL integer count of fighter/bombers available
for the MISSION '

I integer loop counter %

J integer loop counter I *

WSTR integer working time (strike)
CSTR integer current hour (strike)
MISCNT integer used to count MISSIONs flown [
UALO integer random number seed for tgt aloca ,
WDAY real day into scenario foor attack -
RDYRATE real operational readiness rate I

--
PROCEDURE ATTRIBUTES: "
RELEASE clears the wave set
ALLOCATE transfers PlANEs from base to -

MISSION.GROUP and assigns an .'4 -

aimpoint to each

Figure B-162

iii. Listing.

B-162

-J

Listiny- of Class MISGEN.

PROCESS CLASS MISGEN(TMSNS,ECHO0); TEXT TMSNS; BOOLEAN ECHO; MISGEN;
BEGIN 55

TEXT ORD,DAY,STRIKE,TGTLOC,ORIGIN,BMRS,FBRS,RDY;
REF(INSTALLATION) TGT; REF(NKAIRBASE) ORI; REF(MISSION)l;
REF(HEAD)WAVE; REF(GEQLOC)TGTGEO; -REF(INFILE) ORDERS;
REF(TGTPREF) MSNTGTS; INTEGER ARRAY AIRSUM(l:2,l:7);
INTEGER NOB,NOF,BAVAIL,FAVAIL,I ,J ,WSTR,CSTR,MISCNT,UALO;
REAL WDAY,RDYRATE;

PROCEDURE RELEASE;
BEGIN
REF (MISSION)X;
X :-WAVE.FIRST;
WHILE X -/- NONE DO -WV.IS;EDBEGIN ACTIVATE X; X.OUT; X WV.IS;ED
END;

PROCEDURE ALLOCATE(NPLNS ,PLQ ,MISQ,TGTMPLT);
INTEGER NPLNS; REF(HEAD) PLQ,MISQ; REF(TGTPREF) TGTMPLT;
INSPECT TGTMPLT DO%

WHILE NPLNS > 0 DO
BEGIN
PLQ.FIRST QUA PLANE.AIMPOINT:-DISCRETE(VECTOR,UALO);
PLQ.FIRST.INTO(MISQ);
NPLNS NPLNS -1;

UALO 32419;
WAVE NEW HEAD;
ORD BLANKS(80);%

ORDERS :-NEW INFILE(TMSNS);vd
ORDERS .OPEN(ORD);

DAY :-ORD.SUB(1,2); STRIKE ORD.SUB(4,2); RDY ORD.SUB(31,5); '

TOTLOC :-ORD.SUB(7,4); ORIGIN :- ORD.SUB(12,4);
BMRS :-ORD.SUB(17,4); FBRS :- ORD.SUB(22,4);
ORDERS.INIMAGE;
WDAY :-DAY.SUB(1,2).GETREAL;
RDYRATE :-RDY.SUB(1,5).GETREAL;
IF ECHO THEN BEGIN OUTTEXT(">AIR:") ;OUTTEXT(ORD) ;OUTIMAGE; END;
WHILE NOT ORDERS.ENDFILE DO

BEGIN
WDAY :-DAY.SUB(1,2).GETREAL;

1* ItIF WDAY CT TIME THEN
BEGIN
OUTIMAGE;
RDYRATE :-RDY.SUB(l,5).GETREAL;
CSTR:= -1
END;

WSTR STRIKE.SUB(1,2).GETINT; I
u.1,

IF WSTR NE CSTR THEN
BEGIN
RELEASE;
CSTR: -WSTR;
REACTIVATE CURRENT AT WDAY + CSTR/24.O;
IF ECHO THEN BEGIN OUTTEXT(">AIR:'t);OUTTEXT(ORD);OUTIMAGE; END;
OUTTEXT(" NEW STRIKE BEGUN "1);OUTTEXT(STRIKE);OUTIMAGE;
NKAB.AOBPOOL(RDYRATE);
END;

TGTGEO :- GEOTAB .FIND(TGTLOC);
TGT :-IF TGTGEO -/- NONE THEN TGTGEO.SITES.FIRST ELSE NONE;
IF TGT -/- NONE THEN

BEGIN
ORI :- NKAB.FIND(ORIGIN);
IF ORI -/- NONE THEN

BEGIN
MISCNT :-MISGNT + 1; N

M :- NEW MISSION(MISCNT,TGT,TGTGEO.GEOLAB,ORI,AIRSUM);
H. ASSIGN;
ORDERS. SETPOS (40);
IF ORDERS.INCHAR ' THEN

BEGIN
MSNTGTS :-NEW4 TGTPREF(IF TGT IS AIRBASE THEN 9 ELSE 5);
INSPECT MSNTGTS DO

FOR J:-l STEP 1 UNTIL NIN DO
VECTOR(J) :-ORDERS. INREAL;

END~
ELSE
MSNTGTS: -TGTDEFAULTS (TGT. INDX);

IF BMRS NE BLANKS(4) THEN
BEGIN
NOB :-BMRS.SUB(1,4).GETINT;
AIRSUM(1,1) :-AIRSUM(1,1) + NOB;
BAVAIL :-ORI.BOMBERS.CARDINAL;
IF BAVAIL LT NOB THEN

BEGIN -

OUTTEXT("BOMBER SHORTAGE FOR TARGET)
OUTTEXT(TGTLOC) ;OUTIMAGE;
NOB :-BAVAIL;
END;

ALLOCATE(NOB ,ORI .BOMBERS ,M. GROUP ,MSNTGTS);

AIRSUM(1,2) :-AIRSUM(1,2) + NOB;I

.4 IF FBRS NE BLAINKS(4) THEN
BEGIN
NOF :-FBRS.SUB(1,4).GETINT;
AIRSTJM(2,1) :-AIRSUM(2,1) + NOF; J

FAVAIL :-ORI.FIGHTERS.CARDINAL;
IF FAVAIL LT NOF THEN

BEGIN
OUTTEXT("FIGHTER SHORTAGE FOR TARGET)
OUTTEXT(TGTLOC) ;OUTIMAGE;
NOF FAVAIL;

B-164

END;
ALLOCATE(NOF,ORI.FIGHTERS,M.GROUP,MSNTGTS);
AIRSUM(2,2) :- AIRSUM(2,2) + NOF;

END; *1

ACTIVATE M;
M.INTO(WAVE); 6

END
ELSE
BEGIN
OUTTEXT("MISSING ORIGIN BASE ");
OUTTEXT(ORIGIN);OUTIMAGE;
END;

END

N ELSE
BEGIN

OUTTEXT("MISSING TARGET ");OUTTEXT(TGTLOC);
OUTIMAGE;

END;
ORDERS.INIMAGE;

END;
RELEASE;
HOLD(l); 0
NKAB :- NONE; I CAUSES RELEASE OF AIR MODULE DATA STORAGE;
OUTTEXT("+++. AIR WAR MISSIONS -"); OUTINT(MISCNT,5);OUTIMAGE;
SETPOS(31);OUTTEXT("KILLED DAMAGED");OUTIMAGE;

OUTTEXT(" SCHED ACTUAL PRE POST");
OUTTEXT(" PRE POST ATK");
OUTIMAGE; 0

FOR I :- i STEP 1 UNTIL 2 DO
BEGIN
FOR J :- 1 STEP 1 UNTIL 7 DO

OUTINT(AIRSUM(I,J),I0);
OUTIMAGE;

END;
ORDERS.CLOSE;
END ** MISGEN ** F

~Figure B-163

e. Class REARAXN.

i. Purpose. This CLASS complements MISGEN by generating rear actions
that inflict damage but are performed by enemy units that are on the ground %
rather than in the air. The purpose of REARAXN is to generate reasonable
levels of facility damage within the capability and likely distribution of S
enemy commando or infiltration units. The success of enemy ground forces is
largely dependent on various probabilities: that the infiltrating unit is not
destroyed enroute, that it reaches its scheduled target, that it is successful
in finding appropriate targets, and last that although it did not initially
find its target it was not destroyed by COMMZ security forces. Friendly forces
are not played other than in an implicit sense in the probability of an 4

infiltration unit being killed. Since the attribute of the units of most
concern is its ability to damage facilities, units are defined by the amount of

B-165

• S

ordnance and explosives that it can carry and use to destroy facilities. It is -_
important to note that once a unit attacks a target it is dropped from further

consideration because it will have exhausted all the known ordnance that it
carries in the attack. See the description of the Ranger/Commando logic in the
main paper.

ii. Class REARAXN Skeleton.

Parameters and Attributes for Class REARAXN.

CLASS: REARAXN PREFIX: PROCESS

SPARAMETERS: %on RCFYL text name of file containing ground I

i r t o hu attack threat f f
id ECHO boolean if true then input record is writ-

carries inteten into the log filei in he

VARIABLE ATTRIBUTES:
RCTHREAT INFILE input threat object for ground

mst part defines teams
2nd part lists attack scenario

sSPFUNIT reference variable

T SPFUNIT reference variableINSTGT INSTALLATION target (installlation)

GTGT GEOLOC GEOLOC that contains target o
ARTGT MAPCELL target (installations or MSRs)

SURVRC HEAD set containing surviving units

TEAMS HEAD list of defined unit types "

TYPORD ORDNANCE points to entry in the ordnance tabl %

TM TEAMORG refers to unit being definedINSRTMEANS TEAMORG refers to unit in attack directive

GROUP text input buffer for RCTHREAT i t
TIMEFLD text insertion time field

SIZE text size of attack (#units) field
GEOTGT text geoloc target (installation) field
AREATGT text area target (i.e. mapcell) field
TMNAME text unit's id label field (definition).

INSRTYPE text unit's id label field (scenario)
COLONE text a 'T' in this field indicates that

it is to be interpreted as a unit

definition recordI
ATTRATE real P(unit destroyed en route)
THRUTGT real P(gets to installation(commits))
PRCATTRIT real P(suriving unit is destroyed)
PRCATK real P(surviving unit attacks that day) '

TYM real TIMEFLD real variable equivalentabl N

URCATTRIT integer random seed b d n
URCATK integer random seed frRTRTI
UATT integer random seed u

UTHRU integer random seed
I integer loop counter (t i) e

B-166

NCRAFT integer ** not used **

THRTCNT integer number of type units in attack
RCSUM integer[summary statistics for ground

Iattacks

--- I
PROCEDURE ATTRIBUTES:
REARBATTLE the body of REARAXN deals with

direct attacks by inserted units.
This routine takes units in SURVRCI
to see if they are killed or if I
they attack a facility.

Figure B-164 0

iii. Listing.

Listing of Class REARAXN.

PROCESS CLASS REARAXN(RCFYLECHO); TEXT RCFYL;BOOLEAN ECHO;
BEGIN
REF(INFILE)RCTHREAT; REF(SPFUNIT)S,T;
REF(INSTALLATION)INSTGT; REF(GEOLOC)GTGT; REF(MAPCELL)ARTGT;
REF(HEAD) SURVRC,TEAMS; REF(ORDNANCE)TYPORD; REF(TEAMORG)TM,INSRTMEANS;
TEXT GROUP,TIMEFLD,SIZE,GEOTGT,AREATGT,TMNAME,INSRTYPE,COLONE;
REAL ATTRATE,THRUTGT,PRCATTRIT,PRCATK,TYM;
INTEGER URCATTRIT,URCATK,UATT,UTHRU,I,NCRAFT,THRTCNT;

INTEGER ARRAY RCSUM(I:8); 'S

PROCEDURE REARBATTLE; 0

BEGIN

S :- SURVRC.FIRST;
WHILE S -/- NONE DO

IF DRAW(PRCATTRIT,URCATTRIT) THEN
BEGIN T:-S.SUC; S.OUT; S:-T; RCSUM(6):=RCSUM(6) + 1; END
ELSE .
IF DRAW(PRCATK,URCATK) THEN

BEGIN
T:-S.SUC; .-

.I IF ATKLOG THEN OUTTEXT("---SPF ATTACK: ");

IF S.TORG.SABOTAGE(S .LOCALE) THEN
BEGIN 9.

S. OUT;
,I~i RCSUM(7) :- RCSUM(7) + 1;

END 0
ELSE
BEGIN
GTGT:-RANDPICK(S.LOCALE.GEOSET); 0
IF GTGT =- NONE THEN INSTGT :- NONE

ELSE

B-167

INSTGT :-RANDPICK(GTGT.SITES);
IF INSTGT -/= NONE THEN

BEGIN
S.TORG.ATK(INSTGT);
S. OUT;

RGSUM(8) RGSUM(8) + 1;
END S

ELSE

EN;S.OUT;

IF ATKLOG THEN OUTIMAGE;-
S :-T;
END;

END- REARBATTLE-;

RCTHREAT :-NEW INFILE(RCFYL);
GROUP :-BLANKS(80);

RGTHREAT. OPEN(GROUP);

RCTHREAT. INIMAGE;
ATTRATE :-RCTHREAT.INREAL; UATT RGTHREAT.ININT;

RCTHREAT.INIMAGE;
THRUTGT :-RGTHREAT.INREAL; UTHRU RGTHREAT.ININT;

RGTHREAT. INIMAGE;
PRCATTRIT :-RCTHREAT.INREAL; URGATTRIT :-RGTHREAT.ININT;

PGTNCAH: RREATINEAL; URCATK :-RGTHREAT.ININT;

LBSTGT :-RCTHREAT.INREAL;
RGTHREAT. INIMAGE;

TEAMS :-NEW HEAD;
GOLONE:-GROUP.SUB(1,1); TMNAME:-GROUP.SUB(6,5);
WHILE COLONE -"T" DO

BEGIN
IF ECHO THEN BEGIN OUTTEXT(">TEM:");OUTTEXT(GROUJP);OUTIMAGE; END;

TM :- NEW TEAMORG(TMNAME);
TM.INTO(TEAMS); -.

RCTHREAT.SETPOS (20);
WHILE RGTHREAT.MORE DO

BEGIN .:

TYPORD: -ORDTAB.FIND(RGTHREAT. INTEXT(5));

IF TYPORD =/- NONE THEN
NEW MUNITION(TYPORD,RGTHREAT. ININT).INTO(TM.ARMS) .,

ELSE
BEGIN
IF NOT ECHO THEN OUTTEXT(RGTHREAT.IMAGE.SUB(1,RGTHREAT.POS))

ELSE SETPOS(RCTHREAT.POS);
OUTTEXT(,A. .SPF. .MUNITION NOT FOUND--TM CENSORED");OUTIMAGE;
RGTHREAT.SETFOS (RGTHREAT.LENGTH + I);
END;

END;

RGTHREAT. INIMAGE;

B- 168

END;

SURVRC NEW HEAD;pTIMEFLD :-GROUP.SUB(1,5); INSRTYPE GROUP.SUB(7,5);
SIZE :-GROUP.SUB(13,5); GEOTGT GROUP.SUB(21,4); V

AREATGT :- GROUP.SUB(27,4);
WHILE NOT RCTHREAT.ENDFILE DO

BEGIN
INSRTMEANS :-NONE; ARTGT :-NONE;
TYM : TIMEFLD.SUB(1,5).GETREAL;
IF TYM <- TIME THEN

BEGIN
IF ECHO THEN BEGIN OUTTEXTQ'>SPF:");OUTTEXT(GROUP);OUTIMAGE; END;
IF GEOTGT - ~ THEN

BEGIN
ARTGT :-AREAS(AREATGT.SUB(1,4) .GETINT);
GTGT NONE;
END
ELSE
BEGIN
GTGT GEOTAB.FIND(GEOTGT);

IF GTGT =1= NONE THEN ARTGT GTGT.CELL;
END;

IF ARTGT -/- NONE THEN
BEGIN
TM:- TEAMS.FIRST;
WHILE TM -/- NONE DO

IF TM.TID - INSRTYPE THEN
BEGIN INSRTMEANS: -TM;TM: -NONE;END
ELSE TM: -TM.SUC;

IF INSRTMEANS - NONE THEN
BEGIN
OUTTEXT ("..SPF.. DELIVERY MEANS ERROR)

OUTIMAGE;
END
ELSE
BEGIN
THRTGNT := SIZE.SUB(1,5).GETINT;
RCSUM(1) := RCSUM(1) + THRTCNT;
FOR I :- 1 STEP 1 UNTIL THRTGNT DO

IF NOT DRAW(ATTRATE,UATT) THEN
BEGIN
IF GTGT =- NONE THEN

BEGIN
NEW SPFUNIT(INSRTMEANS ,ARTGT).INTO(SURVRG);
RGSUM(4) :- RGSUM(4) + 1;0
END
ELSE
IF DRAW(THRUTGT,UTHRU) THEN

BEGIN
INSTGT :- RANDPIGK(GTGT.SITES);
IF INSTGT -/= NONE THEN 0

BEGIN
IF ATKLOG THEN

B-169

'Il

OUTTEXT("---SPF* ATTACK: "); "f

INSRTMEANS.ATK(INSTGT);
RCSUM(3) := RCSUM(3) + 1; --

IF ATKLOG THEN OUTIMAGE;
END;

END
ELSE
BEGIN 0j

NEW SPFUNIT(INSRTMEANS,ARTGT). INTO(SURVRC);
RCSUM(5) :- RCSUM(5) + 1;
END;

END
ELSE
RCSUM(2) :- RCSUM(2) + 1;END ; S-

'

END E

ELSE ~f.*
BEGIN
OUTTEXT(". ..SPF... TARGET NOT FOUND IN ");

OUTTEXT(GROUP) ; OUTIMAGE;
END;

RCTHREAT. INIMAGE;

END
ELSE
BEGIN ".

REARBATTLE;
HOLD(l); , ""
END;

END; f

RCTHREAT. CLOSE; %, .'

OUTTEXT(" VIII.A. RANGER/COMMANDO FILE CLOSED AT TIME ")"

OUTFIX(TIME,2,6);

OUTIMAGE;
WHILE NOT SURVRC.EMPTY DO

BEGIN
REARBATTLE; -. ft

HOLD(l);
END;

OUTTEXT(" VIII.B. RANGER COMMANDO THREAT EXHAUSTED AT TIME ");
OUTFIX(TIME, 2,6) ;OUTIMAGE;OUTIMAGE;
OUTTEXT("RANGER COMMANDO SUMMARY:");
OUTTEXT(" PLAND X-IN IlATK AASG ADFLT X-GND MSR 12ATK");
OUTIMAGE;
SETPOS(25); FOR I :I 1 STEP 1 UNTIL 8 DO OUTTEXT("------.); OUTIMAGE; -

SETPOS(24); FOR I :- I STEP 1 UNTIL 8 DO OUTINT(RCSUM(I),7); OUTIMAGE;
OUTIMAGE; f ..
END *** REARAXN ***" : .'

Figure B-165

8. Procedures -- Functions. The following procedures are those that are - .
called more than once in a typical execution of SEAC. Most are what are
usaully referred to as functions, in that they usually return a value or object

B-170 '1

reference. Exceptions are procedures DIARY and WORK which perform specific

operations and are called once each simulated day.

a. Procedure RANDPICK. S

i. Purpose. This procedure randomly selects an object from the set of

objects passed to it as an argument. If the set, Q, is empty then the value

returned is NONE.

ii. Procedure RANDPICK Skeleton.

Parameters and Local 'ariables for Procedure RANDPICK.

IPROCEDURE: RANDPICK ITYPE: REF(LINK)

IPARAMETERS:
Q HEAD a set of objects

LOCAL VARIABLE:

L LINKAGE pointer to set objects
I integer loop variable

" M integer indicates the Mth item is picked I

--- I
LOCAL PROCEDURE: none

Figure B-166

XI

B-171 I

. %

iii. isting

Listing of Procedure RANDPICK.

REF(LINK) PROCEDURE RANDPICK(Q); REF(HEAD)Q;
BEGIN
REF(LINKAGE)L;INTEGER I,M; m.

IF NOT Q.EMPTY THEN
BEGIN
L :- Q; M :=RANDINT(I,Q.CARDINAL,PICKSEED);
FOR I :- I STEP I UNTIL M DO L :- L.SUC;
RANDPICK :- L QUA LINK;

END;
END -- RANDPICK -- "

Figure B-167

b. Procedure CATOFAC.

-i. Purpose. This procedure takes a JCS category code (eg., 141B), and
creates the FACILITY subCLASS object with which it is associated with internal
to SEAC. The routine is setup to process a candidate similar to a binary

search procedure. It is presently coded into a function but an alternative,
and perhaps more efficient random access, or table lookup method may be
preferrable.

ii. Procedure CATOFAC Skeleton.

Parameters and Local Variables for Procedure CATOFAC. -.

PROCEDURE: CATOFAC TYPE: REF(FACILITY) I

PARAMETERS:
PRP PROPERTY reference to installations real

property table entry for catcode
I CT COMPO reference to catcode entry

MAG real size of the facility I
CTCODE text 4 character JCS category code
CS character identifies construction standard

LOCAL VARIABLE: m
ONE text 1st character of catcode
TWO text first 2 characters of catcode
THREE text first three characters of catcode
FOURTH character 4th character of catcode -

C FACILITY internal pointer to new FACILITY "
object %

--- I %
LOCAL PROCEDURE: none "

Figure B-168

iii. Listing.

B-172

Listing of Procedure CATOFAC.

REF(FACILITY) PROCEDURE CATOFAC(PRP,CT,MAG,CTCODE,CS);
REF(COMPO)CT;REAL MAG;REF(PROPERTY)PRP;TEXT CTCODE;CHARACTER CS;

TEXTNONE ,TWO ,THREE; CHARACTER FOURTH; REF(FACILITY) C;

ONE:-CTCODE.SUB(1,1); TWO:-CTCODE.SUB(1,2); THREE:-CTCODE.SUB(1,3);
FOURTH :-CTCODE.SUB(4,1).GETCHAR;
IF ONE < "5"' THEN

BEGIN

IF ONE < "2" THEN .

BEGIN
IF TWO < "113" THEN

BEGIN
IF THREE - "111" THEN C:-NEW RUNWAY(M4AG,PRP,CT,CS)

ELSE
IF THREE < "1120" THEN C:-NEW PAVEMENT(MAG,PRP,CT,CS)

ELSE 1
IF THREE<"124" THEN C:-NEW POLFACIL(MAG,PRP,CT,CS)

ELSE

IF THREE < "125" THEN C:-NEW TANK(MAG,PRP,CT,CS)
-ELS

IF FOURTH - 'A' THEN C:-NEW
PIPE(MAG,PRP,CT,CS)

ELSE C: -NEW POLFACIL(MAG,PRP,CT,CS);
END* ELSE
IF TWO < "114" THEN

BEGIN
IF THREE - "1136" THEN C:-NEW POWER(MAG,PRP,CT,CS)

ELSE C:-NEW COMO(MAG,PRP,CT,CS);
END ~
ELSE
IF TWO < "115" THEN 5-

BEGIN
IF THREE - "141" THEN C:-NEW OPNS(MAG,PRP,CT,CS)

ELSE C:-NEW REVETMENT(MAC,PRP,CT,CS);
END
ELSE

IF THREE="1.53" THEN C: -NEW STORAGE(MAG,PRP,CT,CS)
-5'- ELSE

IF THREE="156" THEN C:-NEW OPNS(MAG,PRP,CT,CS)
ELSE C:-NEW PIER(MAC,PRP,CT,CS); -.

END

ELSE
IF ONE < "3" THEN C:-NEW SHOP(MAG,PRP,CT,CS)

ELSE
IF TWO LT "142" THEN C:-NEW TANK(MAG,PRP,CT,CS)

ELSE C:-NEW STORACE(MAG,PRP,CT,CS);
END
ELSE
IF ONE - "5" THEN C:-NEW MEDICAL(MAC,PRP,CT,CS)

ELSE

B-173

IF ONE < "8" THEN .

BEGIN
IF ONE - "6" THEN C:-NEW ADMIN(MAG,PRF,CT,CS)

ELSE C:-NEW QTRS(MAG,PRP,CT,CS); - .,,
END
ELSE
IF TWO < "84" THEN

BEGIN
IF TWO - "81" THEN C:-NEW POWER(MAG,PRP,CT,S)

ELSE C:-NEW WASTE(MAG,PRP,GTCS);
END
ELSE
IF TWO < "85" THEN C:-NEW WATER(MAG,PRP,CT,CS)

ELSE
IF TWO<"86" THEN

BEGIN
IF THREE- "851" THEN

C:-NEW ROAD(MAG,PRP,CT,CS,FOURTH)
ELSE
C:-NEW HARDSTAND(MAG,PRP,CT,CS);

END
ELSE

IF THREE- "860" THEN
C:-NEW RR(MAG,PRP,CT,CS,FOURTH) '

ELSE
IF THREE = "872" THEN

C:-NEW REVETMENT(MAG,PRP,CT,CS);
IF C -1= NONE THEN CATOFAC :- C

ELSE

BEGIN
OUTTEXT("..CATOFAC..FALL THROUGH ");
OUTTEXT(CTCODE); OUTIMAGE; '

END;

END -- CATOFAC " -;

Figure B-169

c. Procedure PRIORANK.

i. Purpose. This function converts the letter character used to
designate task priorities (eg., 'V' stands for vital) into its relative
numerical ranking ('V' -> 1, 'C' -> 2, etc.).

ii. Procedure PRIORANK Skeleton.

B-174

-

S~

Parameters and Local Variables for Procedure PRIORANK,

PROCEDURE: PRIORANK TYPE: integer S

PARAMETERS:
I T character priority character 'V', 'C', etc.

I LOCAL VARIABLE: none

-- I
I LOCAL PROCEDURE: none

Figure B-170

iii. Listing.

Listing of Procedure PRIORANK,

INTEGER PROCEDURE PRIORANK(T); CHARACTER T; 0
PRIORANK : IF T = 'V' THEN 1

ELSE IF T- 'C' THEN 2
ELSE IF T - 'E' THEN 3

ELSE IF T - 'N' THEN 4
ELSE 99;

Figure B-171

d. Procedure RATE

i. Purpose. This routine returns (if it exists) a reference to a
POLICY object for a given country, type of work (presently only construction or
repair), and facility (for repair) or installation (for construction) internal N

index.

ii. Procedure RATE Skeleton.

N

B-175

ze

Parameters and Local Variables for Procedure RATE,

I PROCEDURE: RATE I TYPE: REF(POLICY)

I PARAMETERS: l
I COUN integer country index

TGRP character task group ('C' -> construction)

I INST integer installation index
I FAC integer facility index r

I LOCAL VARIABLE: none

I---
LOCAL PROCEDURE: none

Figure B-172 _

iii. Listing. F

Listing of Procedure RATE,

REF(POLICY) PROCEDURE RATE(COUN,TGRP,INST,FAC);
CHARACTER TGRP; INTEGER INST,COUN,FAC;
BEGIN
IF TGRP = 'C' THEN

BEGIN
IF INST C 0 THEN RATE :- CNSTRPLCY(INST,COUN); '

END
ELSE
IF TGRP - 'D' THEN

RATE :- DAMPLCY(FAC,COUN)

ELSE

IF TGRP - 'R' THEN
RATE :- RSTRPLCY(INST,COUN)
ELSE 4.

IF TGRP - 'M' THEN
RATE :- MNTNPLCY(FAC,COUN)
ELSE
BEGIN
OUTTEXT("..RATE..BAD RATE SWITCH ");

OUTCHAR(TGRP);
OUTIMAGE;
RATE :- NONE;
END;

END ** RATE **; .

Figure B-173

e. Procedure COUNCK.

B-176

-.,~

... , 77-77 QW- W, T .I 77 T ..

i. Purpose. This procedure first checks if the single character
country indentifier is acceptable (global variable VALIDCOUNTRIES), and if it
is the numeric indcx of the country is returned as the function's value.

ii. Procedure COUNCK Skeleton.

Parameters and Local Variables for Procedure COUNCK.

PROCEDURE: COUNCK I TYPE: integer

PARAMETERS:
I C text country code checked/converted

LOCAL VARIABLE:
integer loop index variable

I LOCAL PROCEDURE: none

Figure B-174
iii. Listing.

Listing of Procedure COUNCK,

INTEGER PROCEDURE COUNCK(C);TEXT C;
BEGIN INTEGER I;

FOR I:- 1 STEP I UNTIL NUMCOUNTRIES DO
IF C.SUB(l,l)-VALIDCOUNTRIES.SUB(I,l) THEN COUNCK :- I;

END ** COUNCK **;

Figure B-175

f. Procedure C.

i. Purpose. This function calls a PRIMOS system routine to obtain

elapsed CPU time. It has no effect on the execution of SEAC but is useful to •
the user as a means to monitor the progress of the simulation in machine terms.
(This procedure is probably the only routine that would have to be changed if , .

SEAC were to be converted to another host machine running SIMULA.)

%

B-177

0

%

ii. Procedure C Skeleton.

Parameters and Local Variables for Procedure C,

PROCEDURE: C I TYPE: external FORTRAN e*

PARAMETERS:
I CPUTIME integer elapsed CPU time

I LOCAL VARIABLE: none

--- I
I LOCAL PROCEDURE: none

Figure B-176
iii. Listing. '

Listing of Procedure C.

EXTERNAL FORTRAN PROCEDURE CTIME -"CTIM$A" IS '

PROCEDURE C (CPUTIME); NAME CPUTIME; INTEGER CPUTIME;;

Figure B-177

g. Procedure SVCSCK. e

i. Purpose. This procedure first checks if the single character .'

service indentifier is acceptable (global variable VALIDSERVICES), and if it is -

the numeric index of the service is returned as the function's value.

ii. Procedure SVCSCK Skeleton. "

Parameters and Local Variables for Procedure SVCSCK, '.

I PROCEDURE: SVCSCK j TYPE: integer I *-.

[PARAMETERS:
I C text service code checked/converted -

I LOCAL VARIABLE: "

I I integer loop index

--- I
I LOCAL PROCEDURE: none I .,

---------------------------- - -- ---------- -------- - -

Figure B-178

B-178

V % :U,

iii. Listing. -,

Listing of Procedure SVCSCK,

INTEGER PROCEDURE SVCSCK(C);TEXT C;
BEGIN INTEGER I;

FOR I:- I STEP 1 UNTIL VALIDSERVICES.LENGTH DO
IF C.SUB(I,l)-VALIDSERVICES.SUB(I,1) THEN SVCSCK :- I;

END ** SVCSCK **;

Figure B-179 N

h. Procedure DIARY.

i. Purpose. DIARY is a procedure that informs the user how the SEAC • -

execution is progressing. At various stages of data input (eg., creation of 0
the category code table) and the completion of each simulated day a message is
written to the MONITOR printfile. These messages can be examined by the user
to check model performance and progress. The CPU time since the last message
and the .total time since execution began are printed.

ii. Procedure DIARY Skeleton.

Parameters and Local Variables for Procedure DIARY.

PROCEDURE: DIARY I TYPE: none

I PARAMETERS:
I RELTYM real elapsed time since user login I
I T text message to be printed with times

LOCAL VARIABLE: none

--- I
LOCAL PROCEDURE: none

Figure B-180
iii. Listing.

Listing of Procedure DIARY.

PROCEDURE DIARY(RELTYM,T);TEXT T;REAL RELTYM;
BEGIN
C(CPUT);

DELTIME := (.01 * CPUT) ELAPSED;
ELAPSED :- ELAPSED + DELTIME;
MONITOR.OUTFIX(RELTYM,3,10);MONITOR.OUTTEXT(T);MONITOR.SETPOS(60);

MONITOR.OUTFIX(ELAPSED,2,10);
MONITOR.OUTFIX(DELTIME,2,10);MONITOR.OUTIMAGE;

END;
Figure B-181

i. Procedure GET.

B-179
%

'A Am V. w

i. Purpose. This procedure looks for an engineer unit in either an
installation or region list that has a specified unit type code. If a match is
found then GET points to this ENGRUNIT object.

p

ii. Procedure GET Skeleton.

Parameters and Local Variables for Procedure GET. . -

PROCEDURE: GET I TYPE: REF(ENGRUNIT) J.

PARAMETERS:
I EID text UTC of engineer unit to find I "
I Q HEAD set of ENGRUNITs I .I I "

LOCAL VARIABLE: I
E ENGRUNIT points to objects in the set I

--- I
LOCAL PROCEDURE: none I

Figure B-182 -
iii. Listing. ..

Listing of Procedure GET, -r

REF(ENGRUNIT) PROCEDURE GET(EID,Q); REF(HEAD)Q;TEXT EID;
BEGIN
REF(ENGRUNIT)E;
E:-Q.FIRST;
WHILE E -/- NONE DO

IF E.UTCMSTR.EUTC - EID THEN .
BEGIN GET :- E; E :- NONE; END
ELSE
E :- E.SUC;

END -- GET -- ;

Figure B-183

j. Procedure TYPEINSTALL.

i. Purpose. Procedure TYPEINSTALL is called from BUILDMAP and is used
to create an INSTALLATION or subINSTALLATION object of the type indicated on
the GEOLOC file. The default CLASS is INSTALLATION.

ii. Procedure TYPEINSTALL Skeleton.

B-180

Parameters and Local Variables for Procedure TYPEINSTALL.

I PROCEDURE: TYPEINSTALL f TYPE: REF(INSTALLATION) -@

PARAMETERS:
IC integer country index
ISX integer service index
N text name of the installation
TYPE text installation type code

%

ILOCAL VARIABLE: none

--- I
I LOCAL PROCEDURE: none

~Figure B-184

iii. Listing.

Listing of Procedure TYPEINSTALL,

REF(INSTALLATION) PROCEDURE TYPEINSTALL(IC, ISX, N,TYPE);
TEXT TYPE,N;INTEGER IC,ISX;

BEGIN
IF IC*ISX <> 0 THEN

TYPEINSTALL :- IF TYPE = "AFLD" OR TYPE = "COAB" THEN
NEW AIRBASE(IC,ISX,N)

ELSE IF TYPE - "APOD" THEN NEW AIRPOD(ICISXN)
ELSE IF TYPE - "ADA " THEN NEW ADA(IC,ISX,N)

ELSE IF TYPE = "HOSP" THEN NEW HOSPITAL(IC,ISX,N) 0

ELSE IF TYPE - "CAMP" THEN NEW CAMP(IC,ISX,N)
ELSE IF TYPE - "RS&D" THEN NEW CENTER(IC,ISX,N)
ELSE IF TYPE - "PORT" THEN NEW PORT(IC,ISX,N)
ELSE IF TYPE - "SPOD" THEN NEW SEAPOD(IC,ISX,N)
ELSE IF TYPE - "DEPO" THEN NEW DEPOT(IC,ISX,N)

ELSE IF TYPE "ELEC" THEN NEW ELEC(IC,ISX,N)

ELSE NEW INSTALLATION(ICISXN)
ELSE • ;
BEGIN SETPOS(IO);

OUTTEXT("..INST.. ERROR IN TYPING INSTALLATION(CO,SVC) ");
POUTINT(IC,5);OUTINT(ISX,5);OUTTEXT(N);OUTIMAGE;

END;]
END -- TYPEINSTALL -- "

Figure B-185

B-181

F%"9

k. Procedure DEPLOY. "

i. Purpose. One of the particular objectives of SEAC was to improve
the way that units destined for the FCZ are treated as they pass through the
COMMZ. This is discussed in the main paper under RS&D. Implicit in developing
such logic, however, is the need to establish probable unit destinations. In
the initial application of SEAC, the force requirements number (FRQN) was
judged to be the best indicator for FCZ bound units. DEPLOY and RS&D key on
the FRQN and compare its first character to a list of characters that indicate
units which probably deploy to the FCZ. Future applications of SEAC might
require changes if an alternative to FRQN proves better. ''

ii. Procedure DEPLOY Skeleton.

Parameters and Local Variables for Procedure DEPLOY.
A,

PROCEDURE: DEPLOY j TYPE: boolean I

I PARAMETERS:
IJ

I FRQN text force requirements number from I
unit arrivals file

LOCAL VARIABLE: " '
I integer loop variable

--

LOCAL PROCEDURE: none

Figure B-186
iii. Listing. 0

Listing of Procedure DEPLOY.

BOOLEAN PROCEDURE DEPLOY(FRQN);TEXT
FRQN;

W ,

BEGIN INTEGER I;
* "4

FOR I := I STEP I UNTIL COMBATIDS.LENGTH DO
IF COMBATIDS.SUB(1,1) = FRQN.SUB(I,I) THEN DEPLOY := TRUE; .- ' .>

END -- DEPLOY -- "

Figure B-187
-.

1. Procedure BLAST. .

i. Purpose. This procedure is used to generate damage to a facility
that results from a given type of ordnance. SEAC explicitly generates 4

damage--relating actual threat to probable levels of damage. The threat

portion of SEAC works to come up with a possible array of attacks by air and - 0
ground forces against COMMZ facilities. BLAST evaluates the attacks and

B-182

'

determines the amount of relative damage that could occur. The main paperdiscusses the war damage methodology in more detail.

ii. Procedure BLAST Skeleton.

Parameters and Local Variables for Procedure BLAST.

I PROCEDURE: BLAST I TYPE: real

j PARAMETERS:
DCRIT text damage criteria (EMDA, EM

, SIZ real size of facility target
TGTSTD character construction standard 'I' or 'T'
OTYP ORDNANCE type of explosive used
OUNITS real amount of ordnance (number or lbs) 0

LOCAL VARIABLE:
SUMDAM real accumulated damage from attack
DAMAGE real damage from current ordnance
WTOEDG real distance of blast center to target •

I WAGLE ealedge
WANGLE real azimuth of blast v. target
BANGLE real not used **
CHORD real not used **
REFDIST real distance from blast center to

a target with damage chord I
passing through target midpoint

REFANGLE real central angle for damage arc
REFSEC real area of sector damage
MISDIST real miss distance
OFFSET real distance between target and blast IX

centers S
I WR real weapon radius (blast or fragment) I

TGTRAD real target radius
TGTAREA real target area (n/a for linear target) I
HITRNG real max offset for damage to occur
BX real x coordinate of ordnance center I
BY real y coordinate of ordnance center 0

LOCAL PROCEDURE: none

-r%

Figure B-188 "'

B-183

iii. Lsig

Listing of Procedure BLAST, J

REAL PROCEDURE BIAST(DCRIT,SIZ,TGTSTD,OTYP,OUNITS);
TEXT DCRIT;REAL SIZ,OUNITS; REF(ORDNANCE) OTYP;GHARACTER TGTSTD;
BEGIN
REAL SUNDAM, DAM4AGE ,WTOEDG ,WANGLE ,BANGLE,CHORD, REEDIST ,REFANGLE ,REFSEC;
REAL MISDIST,OFFSET,WR,TGTRAD,TGTAREA,HITRNC,BX,BY;
IF ATKLOG THEN BEGIN OUTTEXT(" .BLAST. ");OUTTEXT(DCRIT); END;

IF OTYP IS ROCKET THEN CO TO RETURN; -

TGTRAD :-IF DCRIT - "EMDL" THEN (.5 * SIZ) ELSE (.5 * SQRT(SIZ));
IF OTYP IS BOMB THEN '

BEGIN
WR :- OTYP QUA BOMB.EFFECT(TGTSTD);
HITRNG TOTRAD + OTYP QUA BOMB.RFRAG;
MISDIST IF DCRIT = "EMDL" OR DCRIT - "EMDA" THEN 0.0 ELSE WR;
END
ELSE
IF OTYP IS DEMOL THEN

BEGIN
WR :=OTYP QUA DEMOL.EFFECT(TGTSTD,OUNITS);
HITRNG TGTRAD; _
MISDIST 0.0;
END '

ELSE MISDIST -2 -2 TGTRAD;

WHILE OUNITS > 0.0 DO
BEGIN
IF OTYP IS BOMB THEN

BEGIN
IF DRAW(OTYP QUA BOMB.DUDRATE,UDUD) THEN BX:=1O*HITRNG

ELSE
BEGIN ~-
BX :-UNIFORM(-HITRNG,HITRNG,UDAM); %~
BY:-IF DCRIT - "EMDL" THEN 0.0 ELSE

UNIFORM(-HITRNG,HITRNG,UDAM);
OFFSET :- SQRT(BX*BX + BY*BY)
END;

OUNITS :- OUNITS - 1.0;
END
ELSE
BEGIN OFFSET:=BX:=UNIFORM(0O,HITRNG,UDAM);OUNITS:=0.0;END;

IF ATKLOG THEN
BEGIN -

OUTTEXT("l DIST:");OUTFIX(OFFSET,2,6); t~
OUTTEXT(", RAD:");OUTFIX(TGTRAD,2,6); -

END;
IF OFFSET > TGTRAD ~- MISDIST THEN DAMAGE :=0.0

ELSE
IF DGRIT - "EMDA" THEN DAMAGE :- 1.0

ELSE

IF DCRIT "EMDL" THEN DAMAGE:=WR
ELSE

B-184

IF TGTRAD > WR THEN
BEGIN
IF OFFSET > TGTRAD THEN

BEGIN
WTOEDG OFFSET -TGTRAD;

DAMAGE (.5*WR*WR)*(PI*WANGLE/R180 -SIN(WANGLE))
END
ELSE
BEGIN

dulWTOEDG TGTRAD - OFFSET;
IF WTOEDG > WR THEN DAMAGE :=PI * W * WR

ELSE
BEGIN
WANGLE R360 - 2 * ARGGOS(WTOEDG/WR)

DAMAGE (.5*WR*WR)*(PI*WANGLE/Rl8O -

END; SIN(WANGLE));
END;

END;

ELSE
IF OFFSET + TGTRAD < WR THEN DAMAGE :=TGTAREA

ELSE
BEGIN

REFANGLE 2*ARCSIN(TGTRAD/WR);
REFDIST WR * COS(REFANGLE);
IF OFFSET -TGTRAD > REFDIST THEN

BEGIN
WTOEDG OFFSET - TGTRAD;

WANGLE 2 * ARGGOS(WTOEDG/WR);
DAMAGE (.5*WR*WR)*(PI*WANGLE/Rl8O-SIN(WANGLE));
END
ELSE

W BEGIN
REFSEG : (.5*WR*WR)*

(PI*REFANGLE/R18O-SIN(REFANGLE));

DAMAGE: =REFS EG+(TGTRAD+TGTRAD) *
(TGTRAD-OFFSET+REFDIST);

END;

END;
SUMDAM :=SUMDAM + DAMAGE;
DAMAGE :=0.0
END;

BLAST :- SUMDAM;

* RETURN:
END -- BLAST --

Figure B-189

B-185

9. Procedures -- Major. The following procedures, although equivalent to the -

preceeding functions in format, are much larger in purpose or operation. They
are termed "major" procedures to distinguish the more expansive role that they
play within SEAC.

a. Procedure BUILDMAP.

i. Purpose. This procedure creates the abstract COMMZ representation. "
(The main paper and individual CLASS descriptions discuss the region, mapcell,

and installation framework used in SEAC.) Two files are read: the +;
region/mapcell file and the GEOLOC file. Definitions evolve in a strict top ..
down fashion: first the regional hierarchy is defined for a country; then
mapcells are "mapped" to the (sub)regions that contain them; and finally the 4."
GEOLOC data defining COMMZ installations and indicating which mapcell is
processed. Inconsistent, missing, or uninterpretable records are reported.

A

ii. Procedure BUILDMAP Skeleton.

S,'.:.',

B-186

Ir N..

Parameters and Local Variables for Procedure BUILDKAP.

%

PROCEDURE: BUILDMAP I TYPE: none

I PARAMETERS:
ECHO boolean if true then input printed as read

I MAPFILE text name of region/mapcell def file I
I GEOFILE text name of GEOLOC file

LOCAL VARIABLE:
TMPR REGION[J used to construct region heirarchy

. MAPDATA INFILE object for MAPFILE I
CELLOCS INFILE object for GEOLOC '

CKGEO GEOLOC used to determine if GEOLOC exists I-0
GOBJ GEOLOC used for new GEOLOC I-.
TMPINSTL INSTALLATION used for new INSTALLATION
CIN INSTALLATION used for finding INSTALLATIONs '-

RBUF text buffer for region/mapcell input
DEFTYP character if 'R' then REGION def else MAPCELL
CBUF text BUFFER FOR GEOLOC (INSTALLATIONS) I
MC text CBUF mapcell index field
GLOC text CBUF GEOLOC field

. CCOUN text CBUF country field
CSVC text CBUF service field

I CNAM text CBUF GEOLOC/INSTALLATION name
CINTYP text CBUF installation type •
CMAJ text CBUF owning installation indicator "
RX integer numeric index of current region

V RXR integer numeric index of subordinate regionj

RXC integer numeric index of subordiante mapcell
RECOUN integer country on input record

I CURCOUN integer country being defined (records) I
I integer loop index
IMC integer numeric equivalent of MC

, ICOUN integer numeric equivalent of CCOUN %
ISVC integer numeric equivalent of CSVC

RSPRD integer country index having road respon.
RSPRR integer country index having railroad resp..
RSPPP integer country index having pipeline resp -

--
I LOCAL PROCEDURE:

ERROR none prints error messages

Figure B-190

B-187
S',

iii. Listing.

Listiny- of Procedure BUILDMAP.

PROCEDURE BUIIDMAP(ECHOMAPFILE,GEOFILE);
TEXT MAPFILEGEOFILE;
BOOLEAN ECHO;
BEGIN
REF(REGION) ARRAY TMPR(1:100);
REF(INFILE) MAPDATA, CELLOCS;
REF(GEOLOC)CKGEO,GOBJ ;REF(INSTALLATION)TMPINSTL,CIN;

TEXT RBUF;CHARACTER DEFTYP;
TEXT CBUF,MC,GLOC,CCOUN,CSVC,CNAM,CINTYP,CMAJ;
INTEGER RX, RXR,RXC ,RECOUN, CURCOUN, I;
INTEGER IMC,ICOUN,ISVC,RSPRD,RSPRR,RSPPP;

PROCEDURE ERROR(T1,T2) ;TEXT T1,T2;
BEGIN SETPOS(1O);
OUTTEXT (" ### BUILDMAP ERROR-"2);
OUTTEXT(T1) ;OUTTEXT(T2);

OUTIMAGE;
END;

RBUF :-BLANKS(80);
MAPDATA :-NEW INFILE(MAPFILE);
MAPDATA. OPEN (RBUF);

MAPDATA. INIMAGE;
CURCOUN :=COUNCK(RBUF.SUB(l,l));
OUTTEXT(I. .MAPBLD. .COUNTRY. .");OUTINT(CURCOUN,3);OUTIMAGE;

TMPR(l) :-RGNSTRUC(1) :-NEW REGION(1,CURCOUN); .

WHILE NOT MAPDATA.ENDFILE DO
BEGIN
MAPDATA.IMAGE :-MAPDATA.IMAGE.STRIP;
IF ECHO THEN BEGIN OUTTEXT(">RGN:");OUTTEXT(RBUF);OUTIMAGE;END;

RECOUN COUNCK(MAPDATA.INTEXT(l));
DEFTYP MAPDATA.INCHAR;
IF RECOUN NE CURCOUN THEN

BEGIN
OUTTEXT(". .MAPBLD. .COUNTRY CHANGE..");
OUTINT(RECOUN, 3) ;OUTIMAGE;
FOR I :=1 STEP 1 UNTIL 100 DO TMPR(I) NONE;
CURCOUN RECOUN;%
TMPR(1) RGNSTRUC(CURCOUN) NEW RECION(1,CURCOUN);

END;
RX MAPDATA.ININT;
IF TMPR(RX) =/= NONE THEN

BEGIN
IF DEFTYP = 'R' THEN

BEGIN
WHILE MAPDATA.MORE DO A .

BEGIN
RXR : MAPDATA.ININT;
TMPR(RXR) :-NEW REGION(RXR,CURCOUN);

B-188

7.,'

TMPR(RXR).INTO(TMPR(RX) SUBRGNS); .

TMPR(RXR).SUPRGN :- TMPR(RX);
END;

END
ELSE
IF DEFTYP - 'C' THEN

BEGIN
RSPRD:=COUNCK(MAPDATA. INTEXT(1));
RSPRR:-COUNCK(MAPDATA. INTEXT(1));
RSPPP:=GOUNCK(MAPDATA. INTEXT (I)); -

WHILE MAPDATA.MORE DO
BEGIN
RXC :-MAPDATA.ININT;
IF AREAS(RXC) -- NONE THEN

AREAS(RXC) :-NEW MAPCELL(RSPRD,RSPRR,
RSPPP);

NEW REGCELL(AREAS(RXC)).

INTO(TMPR(RX) .SUBRGNS);
EDAREAS(RXC).RGNLINK(CURCOUN) :-TMPR(RX);

END;

ELSE
ERROR("<< WRONG CARDTYPE >> ,RBUF);

END
ELSE
ERROR("<< REGION DOESN'T EXIST >> ",RBUF);

MAPDATA.IMAGE :-RBUF;
MAPDATA.INIMAGE;
END;

MAPDATA.CLOSE;
OUTTEXT(" I. REGION-MAPCELL MAPPING COMPLETE");OUTIMAGE;

CBUF :-BLANKS(80);
CELLOCS :-NEW INFILE(GEOFILE);
CELLOCS.OPEN(CBUF);
CELLOCS. INIMAGE,

MC :-CBUF.SUB(1 ,3); GLOC :-CBUF.SUB(5 ,4);
CCOUN :-CBUJF.SUB(10,1); CSVC CBUF.SUB(13,I);
CNAM CBUF.SUB(15,20); CINTYP CBUF.SUB(40,4);
CMAJ :-CBUF.SUB(46,4);

WHILE NOT GELLOCS.ENDFILE DO
BEGIN
IF ECHO THEN BEGIN OUTTEXT(">GEO:") ;OU)TTEXT(CBUF) ;OITIMAGE;END;
IMC : MC.SUB(1,3).GETINT;
IF ArEAS(TMC) -/- NONE THEN

BEGIN
ICOUN COUNCK(CCOUN.SUB(l,1));
ISVC SVCSCK(CSVC.SUB(l,1));
IF (ICOUN * ISVG) > 0 THEN

BEGIN
CKGEO CEOTAB.FIND(CLOC);

B-189

Lon r '.- ., l;l. 0

IF GKGEO -NONE THEN
BEGIN
IF CINTYP - "COAB" THEN
ERROR("<< GOLOCATED BASE DOESN'T EXIST >>'

GBUF)
ELSE

IF GINTYP - "GMt'X" THEN '
BEGIN
CKGEO :-GEOTAB.FIND(CMAJ);
GIN :-MATCH(CKGEO,ICOUN,ISVG);
IF GIN - NONE THEN

ERROR("«< GOMPLEXING ",GBUF)
ELSE
NEW GEOSUB(GLOG,GKGEO).

END RANK(GEOTAB);

ELSE
BEGIN
GOBJ :-NEW GEOLOG(GLOC);
GOBJ.RANK(GEOTAB);
GOBJ.INTO(AREAS(IMG) .GEOSET);
TMPINSTL :-TYPEINSTALL(ICOUN,ISVC,

GNAM.SUB(1,20) .STRIP,GINTYP);
TMPINSTL.INTO(GOBJ.SITES);
IF GINTYP - "AFLD" OR

GINTYP - "APOD" THEN
TMPINSTL. DETRQMT("BASE" ,1.O);

INSPECT TMPINSTL -

WHEN AIRPOD DO
GEOCTRS(CBUF.SUB(51,20))

WHEN SEAPOD DO
GEOGTRS(CBUF.SUB(51,20))

WHEN ADA DO DETRQMT("ADA",1.O);
GOBJ.CELL :-AREAS(IMG);
END;

END
ELSE '
BEGIN
GIN :-MATGH(CKGEO,IGOUN,ISVG);
IF GIN -/- NONE THEN

ERROR(" [[INSTAL AMBIGUITY J"

GBUF. SUB(l,50))
ELSE
BEGIN
TMPINSTL :- TYPEINSTALL(IGOUN, ISVG,

CNAM.SUB(l,20) .STRIP,CINTYP);
IF GINTYP - "COAB" THEN

BEGIN '

GIN: -GKGEO.SITES.FIRST;
WHILE GIN -/- NONE DO

IF GIN IN AIRBASE THEN
BEGIN
GIN QUA AIRBASE.COLOG:-TMPINSTL;
TMPINSTL.INTO(GKGEO.SITES);

B-190

CIN:-NONE;

END
ELSE
CIN: -CIN.SUC;

IF TMPINSTL.PRED == NONE THEN
ERROR(" [[COLOCATION FAILED]]",

CBUF);
END
ELSE

BEGIN
IF CINTYP - "AFLD' OR

CINTYP - "APOD" THEN
TMPINSTL.DETRQMT("BASE" ,l.0);

INSPECT TMPIrSTL
A WHEN AIRPOD DO

GEOCTRS(CBUF.SUB(51,20))
WHEN SEAPOD DO

GEOCTRS(CBUF.SUB(51,20))

WHEN ADA DO DETRQMT("ADA",I.O);

TMPINSTL.INTO(CKGEO.SITES);
END;

END;
END;

END
ELSE
ERROR("<< BAD COUNTRY SERVICE >> ",CBUF);

END
ELSE I

ERROR("<< MISSING MAPCELL AREA >> ",CBUF);

CELLOCS.INIMAGE;
END;

CELLOCS . CLOSE;

OUTTEXT(" II. GEOLOC TREE FINISHED");OUTIMAGE;

END ** BUILDMAP **;

Figure B-191

b. Procedure ADDASSETS.

i. Purpose. This procedure reads the ASSET file and instigates the

initial creation and assignment of facility assets to installations and
mapcells. In the case of installation assets the target location is identified

* by its GEOLOC-country-service designation. MSR assets, i.e. roads, railroads,
and pipelines, are assigned according to the mapcell index.

ii. Procedure ADDASSETS Skeleton.

B-19

B-191

Parameters and Local Variables for Procedure ADDASSETS N

I PROCEDURE: ADDASSETS TYPE: none .?

I PARAMETERS: I ,
I ASSETFYL text name of the ASSET file I

LOCAL VARIABLE:

ITEM text input buffer for file
LOKEY text ITEM location field (inst or cell) .

LSTKEY text copy of last LOKEY

CCODE text ITEM category code field j

SIZE text ITEM catcode size field I
UOM text ITEM catcode unit of meas field
CNTRY text ITEM country field
SRVC text ITEM service field
ARINDX integer numeric equivalent of mapcell LOKEYI
RSIZE real numeric equivalent of SIZE
PRINTERR boolean flags status of present location I
G GEOLOC object for installation LOKEY
P PROPERTY object associated with CCODE type I
AFAC FACILITY not used ** " .-

I MPC MAPCELL object identified by ARINDX
CTC CATCOD not used **

INS INSTALLATION object for LOKEY-CNTRY-SRVC
CMPO COMPO not used ** j

--
LOCAL PROCEDURE: none

Figure B-192
iii. Listing.

Listing of Procedure ADDASSETS .

PROCEDURE ADDASSETS(ASSETFYL);

TEXT ASSETFYL;
BEGIN

REF(INFILE) ASSETS;
TEXT ITEM,LOKEY,LSTKEY,CCODE,SIZE,UOM,CNTRY,SRVC;
INTEGER ARINDX; REAL RSIZE; BOOLEAN PRINTERR;
REF(GEOLOC)G; REF(PROPERTY)P; REF(FACILITY)AFAC;
REF(MAPCELL)MPC; REF(CATCOD)CTC; REF(INSTALLATION)INS;
REF(COMPO)CMPO;
ITEM :- BLANKS(120);
ASSETS :- NEW INFILE(ASSETFYL);
ASSETS.OPEN(ITEM);
ASSETS.INIMAGE;
LOKEY :- ITEM.SUB(I,4); LSTKEY :- BLANKS(4);

CCODE :- ITEM.SUB(II,4); SIZE :- ITEM.SUB(21,10);
UOM :- ITEM.SUB(33,2); CNTRY :- ITEM.SUB(17,1);
SRVC :- ITEM.SUB(19,1);
WHILE NOT ASSETS.ENDFILE DO

B-192

le

BEGIN
IF LOKEY <> LSTKEY THEN

BEGIN 0
INS:-NONE; MPC:-NONE;
IF NOT LETTER(LOKEY.SUB(l, 1).GETCHAR) THEN

BEGIN
ARINDX :- LOKEY.SUB(l,4).GETINT;
MPG : AREAS(ARINDX);
END
ELSE
BEGIN
G: -GEOTAB.FIND(LOKEY); ~
INS: -MATGH(G,GOUNGK(GNTRY.SUB(1,1)),

END; SVSK(SRVC.SUB(1,1)));

LSTKEY :- LOKEY;
PRINTERR :- TRUE;
END;

GMPO :-NONE;

-RSIZE :-SIZE.SUB(1,10).GETREAL;

IF INS -- NONE THEN
BEGIN
P :- INS.ASSETS.FIND(CCODE);
IF P -NONETHEN

BEGIN
P :- NEW PROPERTY(GCODE);
IF P.XREF(INS) THEN P.RANK(INS.ASSETS);
END;

IF P.CMP =/= NONE THEN P.SHOWS(RSIZE,UOM);
END
ELSE
IF MPG -- NONE THEN

BEGIN
IF PRINTERR THEN

BtG!N SETF3DS(20);
OUTTEXT(". .ASSETS .. .PLACE ERROR--");

q OUTTEXT(ITEM. SUB(1 ,40)); S
OUTIMAGE;

END;

END
ELSE
IF NOT MPC.HASA(CCODE,COUNCK(CNTRY.SUB(1,1)),

SVGSGK(SRVG.SUB(1,1)),UOM,RSIZE,XTSTD) THEN
BEGIN
OUTTEXT(". .ASSETS. .CATGODE NOT ID'D)0

OUTTEXT(ITEM.SUB(1,40));
OUTTEXT(", IN AREA "1);OUTINT(ARINDX,5);

OUTIMAGE;
END;

B-193

LASSETS. INIMAGE;
END;

ASSETS.CLOSE;
OUTTEXT(" VI. ASSET FILE ENTERED");OUTIMAGE;
END -- ADDASSETS --;

Figure B-193

c. P-ocedure SETUP.

i. Purpose. This procedure defines and initializes the anticipated
enemy air assets that will be used against the COMMZ as found on the threat
setup file. (See Data File Annex for datum itemization.) The following data
is read: facility group target distributions by installation subCLASS;
superficial and structural thresholds as well as effective miss distances for
facility subCLASSES; distribution of airfield runway crater priorities;
notionalized span lengths for masonry and steel bridges; auxiliary damage
factors for bridges, rail tracks, pipelines, roads, storage tanks, and storage
bladders; entry of ordnance type and characteristics for enemy planes and
infiltration units; entry of plane types, characteritics and payloads; listing
of enemy airbases; and finally the inventory of planes by enemy airbase at the
start of the scenario.

ii. Procedure SETUP Skeleton.

'?

%jb

-B9

B- 1944

%

Parameters and Local Variables for Procedure SETUP.

N

I PROCEDURE: SETUP TYPE: none •

SPARAMETERS:
STAIR text name of threat information file

ECHO boolean flag to print input data

LOCAL VARIABLE:
START INFILE object for TAIR
BASE NKAIRBASE enemy airbase object reference
TGP TGTPREF object reference
PT AIRCRAFT points to objects in PLANETYPES seti
P AIRCRAFT indicates present AIRCRAFT type •
FRAME AIRCRAFT used to define AIRCRAFT types
ACGRP HEAD indicates which set to place new

PLANE (either bombers or fighters)I
ORDCLS ORDNANCE points to match in ordnance table

SBUF text input buffer for START
RECTYPE text single character record type ID I 0

INGEO text SBUF enemy airbase field
PTYPE text SBUF aircraft type field
NOPLANES text SBUF number of type planes field I
MAXRNG text not used **

ACID text SBUF base aircraft type field I
I ACCAT text SBUF bomber or fighter id field I

ACRNG text SBUF aircraft max range field ,

% ACSPEED text SBUF aircraft speed field
ORDNCID text SBUF ordnance name field
ORDID text SBUF ordnance type field 4
I integer loop index
K integer loop index
L integer loop index
NT integer vector dimension for installation I

target preference

NUMPLANES integer numeric equivalent of NOPLANES ,

--- I
LOCAL PROCEDURE: none

Figure B-194

'W

B-195

r-

ii.Li7,ting.

Listing of Procedure SETUP.

PROCEDURE SETUP(TAIR,ECHO);
TEXT TAIR;BOOLEAN ECHO;
BEGIN
REF(INFILE) START; REF(NKAIRBASE)BASE; REF(TGTPREF) TGP;
REF(AIRCRAFT)PT,P; REF(I-EAD)ACGRP; REF(AIRCRAFT)FRAME;
REF (ORDNANCE) ORDCLS;-
TEXT SBUF, RECTYPE, INGEO, PTYPE ,NOPLANES ,MAXRNG;
INTEGER I,K,L,NT,NUMPLANES;
TEXT ACID,ACCAT,ACRNG,ACSPEED,ORDNCID,ORDID;

SBUF BLANKS(80);
START NEW INFILE(TAIR);
START.OPEN(SBUF);
START .INIMAGE;

PKILL:-START. INREAL; UKILL:-START. ININT; START. INIMACE;
PSUC:-START. INREAL; USUC:-START. ININT; START. INIMAGE;
PBEFOR:-START. INREAL; UBEFOR:-START. ININT; START. INIMAGE;
PDAM:-START. INREAL; UDAM:-START. ININT; START. INIMAGE;
PHIT:-START. INREAL; UHIT:-START. ININT; START. INIMAGE; -

XREP:-START. INREAL; UREP:-START. ININT; START.INIMAGE;
RELRATE:-START. INREAL; START. INIMAGE;
URDY: -START. ININT; START.INIMAGE;
IF ECHO THEN BEGIN OIJTTEXT("--SET3P RANDOM4 NUMBERS SET");OUTIMAGE;END; -

FOR K :- 1 STEP 1 UNTIL 8 DO FACHIT(K) :-START.INREAL;

START.INIMAGE;
UFHIT :- START.ININT;

FOR K :- 2 STEP 1 UNTIL XINSTAL DO
BEGIN
START. INIMAGE;
START.SETPOS(11); NT :- START.ININT;
TGTDEFAULTS(K) :-NEW TGTPREF(NT);
INSPECT TCTDEFAULTS(K) DO

FOR L :- 1 STEP 1 UNTIL NT DO VECTOR(L) :-START.INREAL;

END;
IF ECHO THEN BEGIN OUTTEXT('"--SETUP TARGETING DATA IN");OUTIMACE;END;
START. INIMAGE;
FOR K :- 1 STEP 1 UNTIL XFACS DO

BEGIN
SUPRFICL(K,1) :=START.INREAL; SUPRFICL(K,2) :=START.INREAL;
STRUCT(K,1):-START.INREAL; STRUCT(K,2):=START.INREAL;
EMDTAB(K) :=START. INREAL; START. INIMACE;
END;

IF ECHO THEN BEGIN OUTTEXT("--SETUP FACILITY VALUES SET");OUTIMACE;END; I
CRTRSPLIT(1) :-START.INREAL; CRTRSPLIT(2) :=START.INREAL;
CRTRSPLIT(3) :-START. INREAL; START. INIMAGE;
SPNLEN(1) :-START. INREAL; SPNLEN(2) :=START.INREAL; START.INIMACE;
DRPSPAN(1):-START.INREAL; DRPSPAN(2):=START.INREAL; START.INIMACE;

B-196

*- 144 ,
%: -Z AL

BRGFAC :- START.INREAL; START. INIMAGE;
RRDAMFAC START.INREAL; RDDAMFAC :-START.INREAL;
TNKDAMFAC START.INREAL; PIPDAMFAC :=START.INREAL;START.INIMAGE;
HTANK :-START.INREAL; HBLAD :- START.INREAL; START.INIMAGE;

RECTYPE :-SBUF.SUB(l,1);
ORDID SBUF.SUB(3,l); ORDNCID :-SBUF.SUB(6,5);%
ORDTAB NEW ORDLIST;

WHILE RECTYPE - "W" DO
BEGIN
IF ECHO THEN BEGIN OUTTEXT(">MUN:");OUTTEXT(SBUF);OUTIMAGE;END;
START.SETPOS(11);
IF ORDID - "B" THEN

NEW BOMB(ORDNCID,START. INREAL,START. INREAL,START. INREAL).
INTO(ORDTAB)

ELSE IF ORDID - "R" THEN
S ~NEW ROCKET(ORDNCID,START. INREAL) .INTO(ORDTAB) V

ELSE IF ORDID - "D" THEN
NEW DEMOL(ORDNCID,START. INREAL, START. INREAL).%

INTO (ORDTAB) :%

ELSE
IF ECHO THEN BEGIN OUTTEXT(" BAD ORDANCE"l);OUTIMAGE;END

ELSE
BEGIN
OUTTEXT(SBUF) ;OUTTEXT(", HAS AN ERRORI) ;OUTIMACE;
END;

START. INIMAGE;
END;

ACID :-SBUF.SUB(6,5); ACCAT :-SBUF.SUB(12,1);
ACRNG :-SBUF.SUB(16,5); ACSPEED :-SBUF.SUB(21,5);

*WHILE RECTYPE - "A" DO
BEGIN
IF ECHO THEN BEGIN OUTTEXT(">PLN:") ;OUTTEXT(SBUF) ;OUTIMAGE; END;N
FRAME :-IF ACCAT-"B" THEN

NEW BMBR(ACID, ACRNG.SUB(I,5).GETREAL,
ACSPEED. SUB(1 ,5). CETREAL)

ELSE
NEW FTR(ACID, ACRNG.SUB(1,5) .GETREAL, .

ACSPEED.SUB(1,5) .GETREAL); I

FRAME. INTO(PLANETYPES);
START.SETPOS(30);
WHILE START.MORE DO

BEGIN
ORDCLS: -ORDTAB.FIND(START. INTEXT(5));

IF ORDCLS -/- NONE THEN

BEGIN
NEW MUNITION(ORDCLS ,START. ININT) .-

INTO(FRAME.PAYLOAD);
END
ELSE
BEGIN

B-197

11 %.-

D

IF NOT ECHO THEN OUTTEXT(START.IMAGE.SUB(1,START.POS))
ELSE SETPOS(START.POS);

OUTTEXT(" ^ MUNITION NOT FOUND,PROCESSING STOPPED"); - -

OUTIMAGE;
START.SETPOS(START.LENGTH + 1);

END;
END;

START. INIMAGE;
END;

INGEO :- SBUF.SUB(7,4);
WHILE RECTYPE - "N" AND NOT START.ENDFILE DO -%

BEGIN
NEW NKAIRBASE(INGEO).INTO(NKAB.FIELDS);
START. INIMAGE;

END;
PTYPE :- SBUF.SUB(12,5); NOPLANES :- SBUF.SUB(18,3);
WHILE RECTYPE - "P" AND NOT START.ENDFILE DO

BEGIN
-IF ECHO THEN BEGIN OUTTEXT(">AOB:");OUTTEXT(SBUF);OUTIMAGE;END;
BASE :- NKAB.FIND(INGEO);
IF BASE -/- NONE THEN

BEGIN
P :- NONE;
PT: -PLANETYPES. FIRST; " -

WHILE PT -/- NONE DO N.

IF PT.ID - PTYPE THEN
BEGIN P :- PT; PT :- NONE; END
ELSE
PT :- PT.SUC;

IF P -/- NONE THEN
BEGIN
NUMPLANES :- NOPLANES.SUB(1,3).GETINT;
ACGRP:-IF P IS BMBR THEN BASE.BOMBERS ELSE BASE.FIGHTERS;
FOR I :- I STEP 1 UNTIL NUMPLANES DO

NEW PLANE(P). INTO(ACGRP);
END
ELSE .
BEGIN
OUTTEXT(". .SETUP.. UNRECOGNIZED PLANE TYPE ")"
OUTTEXT(PTYPE);
OUTIMAGE;
END;

END; .c5 *>

START. INIMAGE;
END ;

START. CLOSE;

OUTTEXT(" VII. THREAT SETUP PROCEDURE COMPLETED");
OUTIMAGE;

END **SETUP **

Figure B-195

B-198

d. Procedure WORK.

i. Purpose. This procedure is called once each day to perform
outstanding or new work tasks to the extent that engineer capability permits.
It looks at each mapcell for MSR related work and each installation that may be
in that mapcell for other facility related work. It does this sequentially
for each priority level. First mapcells and installations vital tasks are
examined, then critical tasks, and so on.

q ii. Procedure WORK Skeleton.

Parameters and Local Variables for Procedure WORK,

I PROCEDURE: WORK I TYPE: none

PARAMETERS: none

LOCAL VARIABLE:

'PX integer loop index (for each priority)
IMX integer loop index (mapcells)

.,RESPCOUN integer country responsible for task
ITT TASK points to next TASK to be checked

IX INSTALLATION loops through SITE sets
GX GEOLOC loops through GOSET sets
PIECE real[] used to track portion of TASK's

horizontal, vertical, & other
workload that can be performed

I MINPIECE real threshold percentum for work to be
performed

--
I LOCAL PROCEDURE: none

Figure B-196
iii. Listing.

.. B-199

_'-".0"

Listing of Procedure WORK.

PROCEDURE WORK;

BEGIN
INTEGER PX,IMX,RESPCOUN;REF(TASK)TT;
REF(INSTALLATION)IX;REF(GEOLOC)GX;
REAL ARRAY PIECE(1:3); REAL MINPIECE; P4

FOR PX :1 1, 2, 3, 4 DO
FOR IMX :- 1 STEP 1 UNTIL NUMCELLS DO

INSPECT AREAS(IMX) WHEN MAPCELL DO
BEGIN
IF PX = 1 THEN TT:-TASKPTR :- TASKLIST.FIRST;

WHILE TT =/= NONE DO __
IF TASKPTR.PRIO <= PX THEN

BEGIN
INSPECT TASKPTR DO -

BEGIN
RESPCOUN := IF FACPTR IS ROAD THEN RDRESP

ELSE IF FACPTR IS RR THEN RRESP
ELSE IF FACPTR IS PIPE THEN PIPRESP

ELSE 0;
IF RESPCOUN > 0 THEN

BEGIN
IF RGNLINK(RESPCOUN).CANDO(WHRZ,WVER,

WOTH,PX,PIECE) THEN
BEGIN TT :- SUC; PERFORM(1.0); END
ELSE >

BEGIN
PIECE(1):=IF WHRZ = 0 THEN 0.0

ELSE PIECE(1)/WHRZ;
PIECE(2):=IF WVER = 0 THEN 0.0

ELSE PIECE(2)/WVER;
PIECE(3):=IF WOTH = 0 THEN 0.0

ELSE PIECE(3)/WOTH;
IF PIECE(l) > PIECE(2) THEN

BEGIN
IF PIECE(l) > PIECE(3) THEN

MINPIECE:=I-PIECE(1)

ELSE MINPIECE := I- PIECE(3); V
END
ELSE
IF PIECE(2) > PIECE(3) THEN

MINPIECE:=I-PIECE(2)

ELSE MINPIECE 1 - PIECE(3);

IF MINPIECE >= PIECEWORK THEN
BEGIN
IF RGNLINK(RESPCOUN).CANDO(

MINPIECE*WHRZ,MINPIECE*WVER,
MINPIECE*WOTH,PX, PIECE) THEN

BEGIN
TT :- SUC; PERFORM(1.0);

END
ELSE

B-200

TT SUG;

END
ELSE
TT SUC;

END;

N END;
END;

TASKPTR TT; l

END
ELSE
TT :- NONE;

GX :-GEOSET.FIRST;
WHILE GX -/- NONE DO

BEGIN
IX: -GX. SITES. FIRST;
WHILE IX =/- NONE DO

BEGIN

IX.TRIAGE(THIS 14APGELL,PX);
IX:-IX. SUG,-
END;

GX: -GX.SUG;
END; 0

END;
END--WORK--

Figure B-1974%

B-20

Jr: A

10. CLASS/PROCEDURE Index.

ADA B-147 MAPCELL B-27 TRANSPO B-113
ADDASSETS B-191 MEDICAL B-105 TYPEINSTALL B-180
ADMIN B-105 MISGEN B-161 UNOFMS B-70 .0

AIRBASE B-138 MISSION B-58 UOMTREE B-49
AIRCRAFT B-85 MUNITION B-85 UTILITY B-109
AIRPOD B-141 NKAIRBASE B-89 WASTE B-112
AUNIT B-115 NKBASES B-31 WATER B-113
AVLTREE B-14 NODE B-104 WORK B-199
BLAST B-182 ORDLIST B-55 .,.

BOMB B-81 ORDNANCE B-80
BUILDING B-101 PAVEVEMENT B-10 1
BUILDMAP B-186 PETRO B-106
C B-177 PIER B-104
CAMP B-142 PIPE B-108
CATCOD B-61 PLANE B-86
CATOFAC. B-172 POLFACIL B-107
CATREE B-41 POLICY B-33
CENTER B-143 PORT B-145 0
CHANGE B-153 POWER B-112
COMO B-103 PRIORANK B-174
COMPO B-69 PROCS B-20
COMPONENT B-24 PROPERTY B-73
COUNCK B-177 QTRS B-106
DATA2 B-17 RANDPICK B-171
DATAI B-15 RATE B-175
DEMOL B-83 REARAXN B-165
DEPLOY B-182 REGCELL B-126
DEPOT B-148 REGION B-116
DIARY B-179 REPORTER B-34
ECAPTREE B-47 REPORTS B-36
ELEC B-148 REVETMENT B-104 ' -
ENGRCAP B-67 ROAD B-115
ENGRPOOL B-25 ROCKET B-82
ENGRUNIT B-78 ROOT B-39 .
FACELEM B-27 RR B-115
FACILITY B-95 RSD B-149 S
FACTOR B-63 RUNWAY B-1i1
FACTORX B-65 SEAKM B-22
FACTREE B-43 SEAPOD B-146
GEOLOC B-70 SETUP B-194 " -
GEOSUB B-72 SHOP B-104 -
GEOTREE B-50 SPFUNIT B-91 0
GET B-180 STORAGE B-105
HARDSTAND B-101 SURFACE B-99
HEAD B-54 SVCSCK B-178 -"

HITS B-127 TANK B-107
HOSPITAL B-148 TASK B-128
INSTALLATION B-131 TEAMORG B-92 •
LINK B-56 TGTPREF B-52
LINKAGE b-53 THREAT B-21

B-202 -A
- - ' .

..

I lf

A

.d

.S~. f"

• ft

ANNEX C

DESCRIPTION OF SEAC'S DATA FILES

Paragraph Page

1 Purpose C-2

2 Approach C- 2

3 Data C-2 ,

4 Facility Planning Factor Data File C-2

5 Facility Construction and Repair Data File C-3 0

*6 Asset Data File C-4

7 Force List Data File C-5

8 Engineer Unit Capability Data File C-6

9 Region Data File C-6

10 GEOLOC Data File C-7

11 Air Threat Data File C-8 S

12 SOF Threat Data File C-9

13 Orders File C-1i

14 Priority/Policy File C-12 •

Figure

C-1 Data Format for Facility Planning Factor File C-3
C-2 Data Format for CATCODE File C-4
C-3 Data Format for Asset File C-5 S
C-4 Data Format for the TROOP File C-6
C-5 Data Format for Engineer Capability File C-7
C-6 Data Format for Region File C-8
C-7 Data Format for GEOLOC File C-9
C-8 Data Format for the Air Threat File C-10
C-9 Data Format for the SOF Threat C-10 0
C-10 Data Format for the Orders File C-12
C-11 Data Format for Priority/Policy File C-13

A.

r""4, ,

1. Purpose. This annex describes the major data files used by ESC's

SEAC model.

2. Approach. This annex: 0

a. Describes the nature and source of each data type used in SEAC.

b. Describes the format of the file as it is stored on the computer

and listed in the appendices to this annex.

c. Indicates the normal security level of the file.

d. Provides comments about that the file contains, and how it is

developed if necessary.

3. Data. The data described in this annex comprises with the input I I

data used by SEAC. One of the major sources of data for SEAC was the CESPG.

Copies of CESPG files must be obtained from Joint Chiefs of Staff (JCS).

(Manipulating the data is largely done by using a full screen editor since the

data are accessed from disk files.)

4. Facility Planning Factor Data File. Engineer workload is a function 0
of the expected numbers and types of facilities that are necessary to support -

the force. Facility planning factors are used by planners to determine what -,

type of typical support facilities are associated with a forward-deployed or

deploying unit.

a. Source. The principal sources of planning factors used by SEAC

are the CESP's PLNGFACT (planning factor) and MASTER Files. The PLNGFACT File - t

is based on data and guidance found in the JCS Memorandum 201-81. 1 The MASTER

File contains information on unit facility requirements that are compiled by . ,

the individual US services. '

b. Content and format. Figure C-1 displays the content and format %,

of the SEAC facility PLNGFACT file.

c. Classification. Much of the data included in the Factor File .

are classified. In particular, unit and equipment facility needs can be

SECRET.

d. Comments. The Factor File was designed to handle all factors

used by SEAC. ESC made additions to the file to either enter minimum

installation facility requirements for classes of installations, or to reflect

Pilanning Factors for Military Construction in Contingency Operations, %

Enclosure to Joint Chiefs of Staff Memorandum (MJCS) 201-81 (JCS, 31 October
1981).

C-2 '-I

""--" " ,

"-W "Jk

DATA FORMAT FOR FACILITY PLANNING FACTOR FILE

Start
Data Item Column Length Type Comments

Factor-key 1 6 Text UTC, equipment item

installation code, etc.
Nation* 8 1 Text For example, 'A':= us
Service* 9 1 Text --

Unit of Measure* 18 2 Text 'X' :- continuation
Rate 21 10 Real

*If nation and service columns are blank, then the factor applies to all %

data items.

Figure C-i

the reduced support requirements mandated for troops moving through the RS&D

pipeline.

5. Facility Construction and Repair Data File. While the various

planning factors dictate the type and amount of facilities that are needed,

additional data are needed to determine the engineer labor requirement

associated with constructing each facility. The labor estimate must also

indicate how much of the effort will be in horizontal, vertical, and other

(general) engineer skill categories. The CATCODE File furnishes these data.

The number of the file is derived from the JCS facility category code for

military facilities which is the basic facility class identifier used in the

file.

a. Source. The CESPG Facility Component Definition (CMPNT) File is %'I

the primary source of data, but Army Technical Manual 5-301-1 concerning the

Army Facilities Components System (AFCS) provides other information that

supplements the CMPNT FILE.
2

b. Content and format. Figure C-2 displays the content and format

of the SEAC CATCODE File.

c. Classification. The CATCODE File is UNCLASSIFIED.

.oV

2 lnstallation Planning Temperate Zone, Army Technical Manual (TM) 5-301-1 -

(HQDA, August 1981).

C- 3

% - .

DATA FORMAT FOR CATCODE FILE

Start I
Data Item Column Length Type Comments

Nation 9 1 Text --

Service 10 1 Text -- ,
Facility name 12 18 Text --

Component size 31 6 Real --

Unit of Measure 38 2 Text --

Partition 41 1 Text --

Horizontal 42 7 Integer Daily manhour requirement
Vertical 49 7 Integer Daily manhour requirement
Other 56 7 Integer Daily manhour requirement
Minimum days 64 3 Integer Minimum days to complete
Facility code 68 4 Text CATCODE
Component type 73 1 Text E = Initial; C = tempo-

rary; W = Repair

Figure C-2 P

'"

d. Comments. ESC relied, to a great degree, on the CESPG's CMPNT *

File, but there was a significant shift in the underlying philosophy in how

the file was used. The CMPNT File might have several components listed for 0

each class of work: beddown, restoration, construction, or damage repair.

ESC instead includes at most three components: an initial construction -

standard; a temporary construction standard; and a standard for damage repair.

The damage repair component applies only to facilities of a temporary -]

standard. Damage to emergency or initial standard facilities will be replaced -

by similar structures.

6. Asset Data File. The Asset File is the list of facilities located ,

in the COMMZ that can be used to satisfy facility requirements. This list .

includes facilities at US or foreign installations identified by their

geographical location code (GEOLOC), as well as an estimate of MSR road,

railroad, and pipeline assets. Host nation (HN) supplied facilities are also

included.

a. Source. The CESPG ASSET and HNASSET Files are the primary

source of asset data. Where facilities at known installations seem low or are

missing, the various service real property inventory files should be

consulted. The Integrated Facility System (IFS) Data Base, for example, S

C-4

.A

maintained by the US Army Engineering and Housing Support Center (EHSC), can 10

be used to supplement US Army installation data. .

b. Content for format. Figure C-3 displays the content and format S

of the SEAC Asset File. 9

DATA FORMAT FOR ASSET FILE

Start

Data Item Column Length Type Comments

Location 1 4 Text GEOLOC or mapcell number
Nation 17 1 Text --

Service 19 1 Text --

Facility 11 4 Text CATCODE
Size 21 10 Integer --

Unit of Measure 33 2 Text --

Figure C-3

c. Classification. Since HN-supplied assets are usually considered

to be classified information, the ASSET File is classified if such data is

present.

d. Comments. ESC found that it is not uncommon for a number of

GEOLOCs (i.e., installations) to be absent from the CESPG ASSET File. While

the IFS data helped to fill in the gaps, ESC had more than a little difficulty

translating the Army location (ARLOC) codes on the IFS into GEOLOCs. In

addition to having to map the IFS's ARLOCs to GEOLOCs, it is also necessary to

translate IFS's AFCS facility codes into JCS CATCODE equivalents. While doing

this, ESC also considered the possible recycling of some peacetime facilities.

For example, AFCS codes indicating family housing were converted into troop

housing assets for the purposes of this study.

7. Force List Data File. The Force List File used by SEAC is derived

from the TPFDD that governs the OPLAN.

a. Source. The CESP TROOP file was used as the primary source of

the Force List File used by SEAC. This file is an extract of the TPFDD, ''

edited to eliminate missing or erroneous data. There is no reason, however, ''p

why the force list may not be extracted directly from the TPFDD, other than

the need to "scrub" the data. %

C-5

IWV

b. Content and format. Figure C-4 displays the content and format

of the SEAC TROOP File.

DATA FORMAT FOR THE TROOP FILE

Start @i

Data Item Column Length Type Comments

Force requirement number 7 5 Text FCZ-bound units
UTC 19 5 Text UTC '"
Destination 24 4 Text GEOLOC
POD 37 4 Text GEOLOC
Time of debarkation 41 31 Integer -- .+.

Service 47 1 Text

Strength 31 6 Integer--

Figure C-4

c. Classification. The data in the TROOP File is classified,

usually at the SECRET level. .

8. Engineer Unit Capability Data File. Daily engineer capability in '

SEAC is determined by estimating the available engineer manhours, broken down ,

by horizontal, vertical, and general skills, as found in the engineer units

supporting the COMMZ.

a. Source. The CESPG Engineer Unit Capability File (ECAPB) was the

source of daily available skill hours for US engineer units. ESC also used

entries on the ECAPB to assign a manhour value to the support expected from

foreign civilian contractors. Information on foreign military and foreign and

US civilian engineer capabilities can also be included if such units have a

role in the scenario. Obtaining data on skill breakdowns for such

organizations, however, can be difficult if manpower and equipment composition .,

is sketchy.

b. Content and format. Figure C-5 displays the content and format

of the SEAC Engineer Unit Capability File.

c. Classification. The SEAC Engineer Unit Capability File is

normally UNCLASSIFIED. '. *5-

9. Region Data File. The region is a device used by the SEAC model to

allocate engineer support on an area basis. The easiest way to visualize it 'S

C-6

.'. %

J -.5'N'r- 12

DATA FORMAT FOR ENGINEER CAPABILITY FILE

Start
Data Item Column Length Type

UTC 2 5 Text
Nation 8 1 Text
Service 10 1 Text
Strength 28 4 Real
Horizontal 33 5 Real
Vertical 38 5 Real
Other 43 5 Real

Figure C-5

is to think of a governmental hierarchy. A country has a number of states or

provinces; each of these may have a number of counties; each county has a

number of cities. Regions are similarly defined, but based on a hierarchy -

that is a function of planned engineer areas of responsibilities. (The region

was designed to remedy the limitation of the base complexing structure found

in the CESPG. For more information on regions, see Annex D, User Guidance.)

a. Source. The regions are defined based on reviews of the OPLAN

and concepts of engineer operation. If these plans are well formulated, it

should be relatively easy to structure regions. If ill-defined, then e

subjective judgment must be used.

b. Content and format. Figure C-6 displays the content and format

of the SEAC Region File.

c. Classification. The SEAC Region File is UNCLASSIFIED.

d. Comments. The regional concept is one that works well within

SEAC, but may initially be difficult to understand. Engineer units can be

assigned to either an installation or a region. For those engineer units not .- ,

assigned to an installation, the region defines the area (and therefore the

installations) that the unit can support. Whereas regions may and most often

do encompass subregions, mapcells do not form such hierarchy. The mapcell is

a unique partition of the COMMZ, and links installations to regions.

10. GEOLOC Data File.

a. Source. A GEOLOC is a four-character code for all types of

locations (civilian and military) throughout the world within SEAC; GEOLOCs

C-7

.VW 5 , ~ ~ ', ~5 ~ '.'. p V * ' *,,

DATA FORMAT FOR REGION FILE , /

Start
Data Item Column Length Type Comments

Nation 1 1 Text - - V.0
Record type 2 1 Text 'R' - region; 'C' =

mapcell
Region record --

Region (super) ?* Integer Region being defined
Region(s) (sub) ?* Integer Region's subregion(s)
Mapcell record
Region ?* Integer Region being defined
MSR responsibility ? 3 Text Road, railroad, pipe-

line
Mapcell(s) ?* Integer Region's mapcell(s)

?: =.free format.
= no fixed length. - I

Figure C-6

identify installations and cities. It is assigned by JCS. There is no single V

source for GEOLOCs, but the starting point is generally a CESPG GEOLOC File,

if one exists for the OPLAN understudy.

b. Content and format. Figure C-7 displays the content and format

of the SEAC GEOLOC File.

c. Classification. The GEOLOC File is UNCLASSIFIED. * *

d. Comments. The CESPG GEOLOC File also defines to which base

complex a GEOLOC belongs. Instead of mapping GEOLOC to a base complex, SEAC "

assigns GEOLOCs to SEAC mapcells. In addition, GEOLOC-identified

installations are categorized by purpose. Ports, camps, airbases, and depots "

are some of the categories. Furthermore, if the GEOLOC is a POD, a list of %'

reception centers (by service) can be included. (Annex D and the Main Paper .** ,A

elaborate on the significance of installation type.) Also, if several CEOLOCs "%

are proximate, they can be mapped into one GEOLOC, using the Major field to

identify it. % **

11. Air Threat Data File. The Air Threat File defines a scenario of

enemy sorties directed against COMMZ targets. '--

C-8

DATA FORMAT FOR GEOLOC FILE

U Start
Data Item Column Length Type Comments

Mapcell 1 3 Integer --

GEOLOC 5 4 Text - -

Nation 10 4 Text - -

Service 13 4 Text - -

Name 15 20 Text - -

Type 40 4 Text Installation class
Major 44 4 Text Superior GEOLOC

ReceptioI? * Text Reception center list

?: = free format.
= no fixed length.

Figure C-7

a. Source. The sources used to develop missions and sorties will .1-

be whatever intelligence or planning documents exist for the scenario.

b. Content and format. Figure C-8 displays the content and format '

of the SEAC Air Threat File.

c. Classification. A sample listing of the Air Threat File will be

determined from the source materiel.

d. Comments. SEAC plays the damage that is caused by enemy air .S
attacks. It does not generate missions. The missions (size, number of
planes, time, etc.) are all developed offline, based on information found in 2

applicable threat documents.

12. SOF Threat Data File. The SOF Threat File defines a possible

scenario of enemy special purpose or operations teams and units directed P.

against COMMZ targets.

a. The file is based on information found in an intelligence

report. %

b. Content and format. Figure C-9 displays the content and format S

of the SEAC SOF Threat File.

c. Classification. The SOF Threat File is classified according to

source classifications.

C-9 N

Ak e

DATA FORMAT FOR THE AIR THREAT FILE

Start

Data Item Column Length Type Comment3 -

Day 1 2 Integer - -

Hour 4 2 Integer - -

Target 7 4 Text Target's GEOLOC -

Origin 12 4 Text Threat airbase -.

Fighter/Bombers 17 4 Integer Number of planes 0
Bombers 22 4 Integer Number of planes
Readiness 31 5 Real Operational readi-

ness
Target preference ? * Real Targeting informa-

tion optional '.
I

?: = free format.
= no fixed length.

Figure C-8 .

DATA FORMAT FOR THE SOF THREAT

Start
Data Item Column Length Type Comments

Time 1 5 Real --

Team type 7 5 Text Name of SOF team

Size 13 5 Integer Number of teams
Target (Installation) 21 4 Text GEOLOC of target
Target (Mapcell) 27 4 Integer Mapcell

Figure C-9

C- 10

%c .$..

7-7 7. 77 V 7. MUU -11 -.wW

d. Comments. The SOF file is much like the Air Threat File. SEAC

only evaluates the proposed scenario in terms of the damage to facilities theP.,

threat's activities are likely to produce. 6

13. Orders File. The data most important to analyzing engineer support

is found in the Orders File. This file enables the analyst to insert engineer

projects, manipulate engineer units, and change the list of mapcells that

comprise the COMMZ. The bulk of records in the file concern engineer units.

SEAC does not use the TPFDD directly for engineer unit assignments. SEAC's

hierarchical representation of the COMMZ (simulating engineer command and area

support relationships) and explicit unit representation (each unit is

individually monitored and controlled) permit the user to assign and move •

engineer units in a manner that closely parallels how they would actually be

used. While most facility requirements result from checking installation and

unit associated planning factors, some facility needs can only be identified -I

through independent analysis. The Orders File is the means within SEAC to S

enter these projects. And finally, scenarios theorize movement of the forward

edge of the battle area (FEBA). As this occurs, the COMMZ may expand or

contract as the case might be. Each mapcell defined for the theater has a 0

flag indicating whether it is to be considered in the COMMZ. This flag can be

controlled by ORDER directives.

a. Source. Since there are three types of records to be

constructed, there are multiple sources for this file.

(1) Special engineer projects or facility requirements based on 0

OPLAN directives, sponsor input, or analysis of logistic support structure

requirements are inserted into the Orders File at the time and for the place

they are needed.

(2) Engineer unit directives are largely derived from the TPFDD S

(or its derivative, CESPG's TROOP File), and from the OPLAN under study, -'

especially the engineer annex. These directives are further supplemented hy\

'p sponsor guidance and study team analysis.

(3) The final type of recorl is used to indicate which mapce1l>

d 4 are to be considered within the area of responsibility of the COA.MZ. If thl".

mapcell is flagged as being in the COMMZ engineer area of responsibility, th1u. %-

workload is determined and available capability is applied. If flagged

otherwise, construction and damage requirements are calculated, but tasks arc _

C-1l

01,'ll-. , I?
l - - I R % -- _ . ..

not generated and work is not performed. The mapcell order record is how the

flag is changed. (NB: The default mapcell flag assumes that is to be

included in all calculations.)

b. Content and format. Figure C-1O displays the various formats of

order file records.

DATA FORMAT FOR THE ORDERS FILE

Start

Data Item Column Length Type Comments

Time: 1 5 Real --

Record type 10 1 Text Unit, project, area
Nation 12 1 Text --

Service 14 1 Text --

Unit:
UTC 16 5 Text --

Strength 21 4 Integer --

From location 26 4 Text/Integer GEOLOC, Region, empty
To location 31 4 Text/Integer GEOLOC, Region, empty

Project:
Facility 16 4 Text CATCODE
Quantity 22 8 Real --

To location 31 4 Text/Integer GEOLOC, Mapcell
Unit of Measure 36 2 Text -- *

Mapcell: "

Mapcell 16 5 Integer --

Include 26 1 Boolean -e-

Figure C-10 .

c. Classification. This file is classified since engineer unit - -

locations and timing are largely derived from classified sources -- OPLANs and

TPFDD. "-4 ."

14. Priority/Policy File. One of SEAC's key features, to "assess" the

adequacy of engineer planning and support, is the priority system. Basically ..

this is a categorization scheme that subjectively appraises the effect of non-

performance of engineer tasks. SEAC combines their priorities with policies,

which control what and how much of engineer work is done. - I

C-12

" - V

44

* 7

* A.-

a. Source. The sponsor is the ultimate source of engineer task N

priorities. ESC, as the originator of the concept, does take an active role
in describing the objective of the process and reviewing the sponsor's

elections for consistency and reasonableness. Policy assignments get into

O more tenuous territory -- it is with less assurance that one can say the HN

will repair 30 percent of war damage, before the magnitude of that damage is

known. Policies are more likely to be based on either assumed levels of

support, or support agreements.

b. Content and format. The format of the Priority/policy file is

found in Figure C-il. It is an ordered file in that the records following the

keyword records are assumed to apply to the work category the keyword denotes.

DATA FORMAT FOR PRIORITY/POLICY FILE

Start
Data Item Column Length Type Comments

Task Group 1 5 Text Indicates construction,
damage, etc.

Facility class 11 4 Text Four-character facility
subCLASS id

Installation class 11 4 Text Four-character install.
subCLASS id

Country 21 1 Text
Priority 26 1 Text v = vital, c = critical,

etc.
Policy 32 5 Real Percent of work to be D

done by military
resources.

Figure C-li

(In the first version of the model, MAINT (maintenance) and RESTR

(restoration) are acceptable entries in the file, but there is no operative

logic or code installed in SEAC for those functions.) Another feature is how 0

SEAC interprets missing nation-task-class entries. It is not necessary to

enter all installation CLASSes for construction, or facility CLASSes for

damage repair. The model assumes, however, that a non-entry means no work is

to be generated for that country-task combination. This might apply if, for

C- 13

.e

-f

examlea dcison ws mde ot o reairrevtmets o tht te hst cunty , ft

,,.
ft- .,

_

.rt ft.

"5. ft...

exmlaAeSinwa aenT toG rearrvemnsortaFh hostEcuntry ."-p.-

hassol reponibiityforpor costCtion

0.

ANNEX D

USERS GUIDE TO SEACG.o

t S

C,.:.IC.

,IJ

ANNEX D %

USERS GUIDE TO SEAC
0

Paragraph Page

1 Purpose D-1

2 Scope D- 1

3 Using SEAC D-1

4 Preparing the Database D-3

5 Modifying SEAC D-13

Fig ure

D-1 SEAC Analysis Process D-3
D-2 SEAC INPUT/OUTPUT STRUCTURE D-4 Ne.

1. Purpose. This annex provides guidance to analysts who plan to use

SEAC to conduct analyses of engineer work in the communications zone (COMMZ).

2. Scope. The philosophy behind SEAC is first discussed. Then the

focus settles on the purpose and preparation of data used in the model. V

3. Using SEAC. SEAC was developed as an in-house tool of the Engineer

Studies Center (ESC). ESC's experience and mission are to analyze important

problems connected with policy development and decisionmaking. Because of its

comparatively small staff, ESC has always been reluctant to assume proponency

for a particular model whose operation and maintenance would consume scarce

resources. ESC has on occasion, nonetheless, developed computer-based systems

when necessary to successfully accomplish studies. Where possible those

systems are adapted to use on other similar studies. The same multifunctional

preference is evident in the design philosophy of SEAC. Although SEAC was

created to accomplish a particular study, it was designed as a tool that would

be adaptable to a variety of problems involving COMMZ engineering. Rather

than designing it to be a "black box," ESC approached it as the archetype for :A.

COMMZ assessments, both general and specific. SEAC can be viewed as an .

analytic workbench where the problem at hand will indicate what if any changes

are necessary.

D-1i

-. '.%

D- 1 At

Ii*

a. Models as Black Boxes. Most models, systems, and games (MSGs)

are designed as stand alone systems that are the proverbial black, or closed

box to most users. A user assembles the required input data, executes the

model, and examines the results. How the model determines those results is

very often of little concern to the user; it usually suffices that he only

knows the general theory behind the model. The black box approach has

justifications such as: it avoids error and comparability questions that

arise when internal programs are changed from one problem to another; it

usually assigns one group responsibilty for program maintenance, improvements

and corrections; and finally, analysts are able to use (i.e., prepare the

input and analyze output) the model much faster if they are not compelled to

understand the internal manipulation of each datum.

b. The SEAC Process. SEAC was developed as a tool to analyze

engineer work in the COMMZ. It simulates the generation of engineer task

requirements and the assignment of programmed engineer resources to meet that 0

workload. SEAC followed the traditional steps of model development: analysis N
.J

of the system, implementation of the model, verification, and validation. %

Unlike many model development efforts, however, it did not arise in a vacuum. ,

Concurrent and intertwined with SEAC's development was the study1 that spawned

it. As an independent study, it too had identifiable phases: problem

definition, data collection, analysis, and prescription. One might therefore

think of SEAC being developed and, in the future, operating in a two-

dimensional space: one dimension or axis is study accomplishment; the other 0

is model modification and verification. Figure 1 portrays these steps as well

as the feedback that occurs. Since ESC anticipates that SEAC will evolve to .% .

meet new study applications, this two-dimensional environment is expected to -

continue to characterize SEAC. New studies will introduce new objectives and

processes that will require a new cycle of analysis and model validation. .*

ESC, therefore, considers SEAC to be an "open" box model (although of course a

user could use the model without changing or adding unneeded details).

'Engineer Assessment, Korea: Communications Zone Analysis (USAESC,

August 1987).

D-2 4
%%

SEAC ANALYSIS PROCESS ,.

+----------- Problem < ---------------------------+
Definition

Data < ---- ---------+

I Collection

V/.Modeling System System Model Model

Goals Analysis Synthesis Verification Validation.,

+ >Anlsix -- ,
T T

------------ > Analysis ---------------------------------

Conclusions

Figure D-1

0

4. Preparing the Database. SEAC has a rather prodigious appetite for

data. Figure D-2 shows the model in terms of input and output data. The .
'

upper-left portion identifies the files and data that the model uses. Some

data files are culled, or adapted from standard sources and require only minor

changes, if any, on the part of the user. Other files are unique to SEAC and.

therefore, must be created by the user. If the analyst is examining a theater

that has been the subject of a previous study, some of the latter files may

possibly be recycled with only minor changes or fixes. As with most computer 7 .

systems, the data structure is probably best learned by examining existing

files and adapting them to the problem at hand. The guidance that follows

attempts to give information, as does Annex C, which would enable an analyst

to assemble any of the SEAC files. (A user is also urged to scan the CLASS

parameter and attribute definitions found in Annex B to understand the data

structures used in the model.)

D-3

9 0

vw-rpl~ W-'F" 7WJ -, - -7

0 -c

CC

1-4 W-~*-,.

V)
0

Uw 0
0C

0~4J
c-

]004(U*
0-4L 4 ca

C EMoCo 0

10- U)4J

0zj .. , .44U a
41 C) -4 4-
(a -4 CC

C0) 44 CL -
w/ __ _ _ __ _ _ CC4

W.o 0

U., 4 4-1 0-

I-) a)-a
EO 0)Q

I--

D -- 4

:) 4J CL

Li C Ljm~a
a) 0

0'

0 CL4- (A

a.-' D- I. ,

p LC~L'C'~CC~C& ~ A~ ' ~ '-' *a. u~-.-

a. Designing the Theater. Representing the theater in a way that

accommodates both geographic and scenario requirements was one of the

principal objectives of SEAC. Other engineer models are frequently faulted *

for their rather restrictive treatment of operations. The Civil Engineering

Support Plan Generator (CESPG), for example, groups geographic locations

together to form something called a base complex. This base complex is a

notionalized super installation which contains all the facilities located

within the area it encompasses and all the engineer units destined for those

locations. Each base complex is treated in isolation, giving rise to %

situations where a complex with unsatisfied requirements might be next to one

with excess capabilities. Nor can units typically be moved between complexes. -

In contrast to this, SEAC provides a more realistic treatment of both

individual installations and engineer units. It does this through a

* representational hierarchy of regions, mapcells, and installation objects.

(1) Regions. Representing the area support mission of Army

engineers was the stimulus for creating the region. Engineer units may .

directly support a specific project, unit or installation, or they may be in

general support, thereby allowing task organizations to support a wider

geographic area containing many installations or units. Defining the

operational or support locale for a unit when it might, at one time, have been

a single facility, or another time an entire province, or possibly a theater

Army area, posed a dilemma. The region hierarchy scheme was developed to

solve this quandary. A region is explicitly defined by the number of regions 0

(subregions) that belong to it, and the region to which it belongs. Note that

a region may have many subregions but only one superior region. Regions . C

(subregions) may also contain mapcells (infra). The important attribute of

regions (subregions) is that engineer units can be assigned to them. When S

thus assigned, an engineer unit can support any engineer requirement that

arises in the region, its subregions, and the mapcells they might contain.

Definition of the regional hierarchy should therefore be based on anticipated

areas of responsibility and the anticipated operational use of engineers in

the theater. If the plan calls for a unit to provide support to several Army

installations and an Air Force base, then there should be a region that %
:.1

contains (directly or derivatively) those installations.

'..D- 5

%

(2) Mapcells. Regions do not provide a complete description of

the theater. Mapcells complete the theater hierarchy with a unique

partitioning of the COMMZ that links installations with regions. It uses an

abstract, user defined representation that divides the theater into cells to

which installations and MSR facilities are assigned. Mapcells do not preserve

any relative location data; a mapcell has no knowledge of its neighbors. The

region is relied upon to provide the locality information. Defining the

mapcells in a theater is a subjective process, but there are guidelines.

Typical considerations that influence mapcell definitions are: installation

groupings, locations of major MSRs, important political or organizational

boundaries (which regions will treat) and, of course, geographical features.

The COMMZ may be thought of as a network of nodes (installations) and links

(MSRs). Mapcells can be used to segregate those areas from unimportant

geographic areas. Needless to say, the starting point is a map of the theater

that contains terrain and installation data. Developing the mapcells then

becomes a matter of balancing the tangibles (geography, installations and

facilities) with the intangibles (plans and units), with the emphasis on the

former. There are many possible partitions, any one of which can be suitable.

One alternative is to simply overlay a symmetric grid onto the theater and

make each square or hexagon a mapcell. SEAC does not, however, demand that

the user overlay a grid. Unlike regions, mapcells do not have engineers %

associated with them; instead, they have installation and MSR data. By

defining regions according to which mapcells they contain, SEAC is able to set .

up different regional trees for each nation being played in the analysis.

(3) Installations (GEOLOCs). Installations are the camps,

airbases, communications sites, etc., that are found throughout the COMMZ and

are militarily significant. They are identified by a geographic location code

(GEOLOC). The user can indicate the type of installation for which SEAC will

apply the appropriate factors and treatment. Currently, there are eight

classes of installations: airbases, camps, ports, ADA sites, electronic

sites, hospitals, depots, and others. The user should refer to the CLASS

descriptions for these installations found in Annex B. Identifying the 4'S.

appropriate installation class may require sleuthing through various lists of 4
S..

installations (e.g., the Army location file). There may also be entries for - -

the installations in the factor file. Where several installations appear to

D-6

,-

'Aw-
-MA~MF~riV- - -

be collocated, they can be grouped together to permit their assets to be

pooled.

(4) Facilities. Engineer activities in the COMMZ are basically 0
to support the logistic structure in the theater rear. Engineers may be

called upon to build, repair, or maintain roads, runways, troop housing,

maintenance shops, etc. Within SEAC, facilities are classified into various _

groups, primarily to provide common or specialized handling of particular

tasks. A good example is that war damage repair on a building is based on the

percent of the building that is damaged, while damage to an airbase runway is

measured by the number of craters that exist (and provision is also made to

classify craters into different groups to simulate the number necessary to

attain a minimum operational strip). There are five general classes (for

surface, petroleum, buildings, utilities, and transportation components). %

These classes, in turn, contain varying numbers of subclasses to permit the %

inclusion of other special data and procedural logic. (See also paragraph S

4.g.)

(5) COMMZ Hierarchy. The region/mapcell/installation hierarchy

described above is the environment in which requirements (facility needs) and

capability (engineer units) arise and interact. One can visualize the system

as having several planes: in the middle is the mapcell plane in which the

theater is uniquely partitioned; below it is the installation plane on which

all the installations are found, each one linked to a particular mapcell

above; below that level are the facilities which belong to the installations; S

and above the mapcell plane is(are) the region plane(s) which group(s)

adjacent mapcells (or other regions) into areas based on support concepts. An

additional feature of SEAC is its ability to incorporate multinational

participation. Within the COMMZ hierarchy, this is done by having parallel 0

regionalizations for each country being played. The one thing they have in

common is that they all point to the same, unique mapcell plane. The model

keeps track of and distinguishes installations of different countries at the

mapcell level.

b. Threat Assessment. Another design goal of SEAC was to generate

damage to facilities closer to the actual capability of the enemy threat. The

CESPG levies damage, but only until D+30. It is also rather cumbersomely done

by entering daily percentage damage figures of particular CATCODES within a 0

D-i7

j .*r k b0 - ~ ~ - '.f. jmi , - m Jv-,v-*• .I uw .
0

.. -~ -- . *.-, *.- -. - . . •

base complex. ESC's methodology is much more detailed and is an intrinsic

part of SEAC. The threat is defined in terms of what delivers damage --

either planes or infiltration units. These, in turn, are defined by what they

can carry that can damage a facility. When a bomb is dropped, or demolition

materiel used, the amount of damage that it produces against the facility is

calculated. It must be emphasized, however, that SEAC is not a wargame --

missions against the COMMZ are scripted offline to the model. __X

(1) Instruments. Damage generation is a direct result of the

enemy's ability to deliver ordnance against a target. Planes are defined by a

likely ordnance configuration. Intelligence sources are the essential source -

for this information. Infiltration units, used in rear area attacks, are

similarly defined. For SEAC's purpose, the only germane threat data concern

the amount of weapons and demolition materiel that these infiltrators are

likely to carry, and which can be used to destroy or damage facilities.

(2) Air. Thr current implementation of the air-attack model

uses preplanned sorties. This was acceptable for the operational plan (OPLAN)

used in SEAC's initial application, but may present problems under different -~

scenarios where the air war may be a different length. The logic of the air

war is described in the main paper of this document, and the format of the air

mission file is in the data Annex C.

(3) Ground. Like the air war, the ground (infiltration) threat

also follows a preplanned script. It is somewhat different, however, because

there is more uncertainty surrounding the infiltrating units. They may, or

may not reach their target; if they miss their target initially, they could

still attack it at a later time; they could also be destroyed enroute before

reaching a target. More important is the fundamental difference between air

and ground instruments: planes can and are rescheduled for attacks, while

ground units are considered expendable -- once they use their ordnance, they

a-e no longer considered by SEAC. Like the air module, the ground module is

only concerned with engineer repairable damage. It does not evaluate the ... ,

disruption that infiltrators would likely cause. The ground submodel is

described in the main paper, and the data formats are found in data Annex C. .,

c. Orchestrating the Scenario. Until SEAC was developed, there was

no engineer COMMZ model that could directly manipulate engineer resources in c. :'
response to scenario events. CESPG takes its engineer resources as it finds

D-8
% V

I

them on the Time Phased Force Deployment List (TPFDL). (Special engineer

situations in CESPC appear to be handled by making "kludgey" changes to the

data base, since the model logic is not easily accessed.) The CESPG accepts

the destination GEOLOC as the permanent duty station, and the unit's resources

are added to those already available to the base complex that contains the

GEOLOC. SEAC, on the other hand, preserves the identity of engineering units

4Rto allow better control of movement and capability within the COMMZ. Changes

in unit status are made through directives entered in the ORDERS file. In

addition to manipulating engineer units, ORDERS also is used to insert

projects into the COMMZ and to redefine the physical limits of the COMMZ. The

latter would be used if the theater expanded or contracted as a result of

changes in the forward edge of the battle area (FEBA). The combination of

identifying individual engineer units within the model, being able to change

their location (area of responsibility), and the regionalization of the

theater described above are among the major improvements in how SEAC manages

engineering capability.

(1) Engineer unit taskings. The starting point for

constructing unit taskings is to identify US engineer units found on the TROOP

file (or TPFDD from which it is derived). Ideally, all engineer unit records

should be extracted and examined. The unit designator, service affiliation,

destination, arrival date, and COMMZ identifier (which distinguishes among

those Army units who will probably deploy forward, and those that stay in the

9 COMMZ) are the items that must be analyzed. If there are engineer units that

do not appear on the engineer capability file (ECAPB), the user must either

drop the unit, find an equivalent unit ECAPB entry, or establish a new ECAPB

Z, entry. Before making this check, the ECAPB file should itself be checked to

assure it reflects current tables of organization and equipment (TOE) and

tables of distribution and allowances (TDA). Unit assignments may be either

to installations (identified by GEOLOC) or to regions. The current convention

is to assign non-US Army units to the installation designated by their TPFDL%

destination. Army units, given their general support mission, are usually

assigned to a region that contains their destination. There are exceptions.

An Army utility team would go to the installation, and Army port construction

companies would go to port installations. Remember that engineer support is

top-down -- a unit assigned to an installation will only support that

D-9

Rb-RISE 59 SIMULATED ENGINEER RSSESSPIENT OF THE COMMUNICATIONSS 41'4
ZONE MODEL (SERC) (DO. (U) ANY ENGINEER STUIES CENTE
FORT DELYCIR VAR ftHALNYCO JUN 66 USRESC-R-16-2

UNCLSSIFIED F/0 25/5 M

sEonhhIi

2.5.

~4. 11.6 2.

HIIIL25 1.JI 4 lll=!L

UTION TEST CHART%

% %

6

installation, while a unit assigned to a region will support all requirements

within that region, the mapcell it encompasses, and the installations they,
in

turn, contain. Specific host-nation contractors (who are coded as US units)

can be inserted when the user knows of specific host-nation capability and

project responsibility. The user will also have to identify engineer units

destined for the FCZ which normally would be excluded from the list of

available COMMZ units. In addition to assigning units, SEAC can move and

extract as well. The user can, therefore, simulate unit movements that are

either intra- or inter-theater. For example, if execution of the model shows

large capability and requirement mismatches, the user could insert movement

orders for underutilized units. (The model does not reallocate units

automatically.)

(2) Special projects. Workload factors do not generate all

required facilities. There are some facilities, and possibly even whole N J

installations, that are required but cannot be generated from simply

processing the TROOP list. These projects are coded by location, category

code, size, and occurrence and placed in the ORDERS file. MSR projects

designated for mapcells are scheduled, since they presumably arose from

separate analysis. Facilities indicated for installations increase -

appropriate requirements but are still subject to whether there are enough

assets on-hand before a task is scheduled.

(3) FEBA movement. Most wars are not stalemates. Territory

expands or contracts depending upon the movement of the FEBA. SEAC is not a
combat model and, therefore, is not cognizant of changes to the location of

the COMMZ. To account for any such changes, however, SEAC employs an ORDERS

file record to indicate whether a mapcell is in a COMMZ area of responsibility "'

or not.

d. Unit Arrivals. Most requirements result from the arrival of

deploying troops in the COMMZ. SEAC relied on CESPG's TROOP file for that

information. That file was used because it theoretically is an extract of the

TPFDL that has been carefully reviewed and corrected. The TPFDD can be used

directly but that also means the user must eliminate equipment records, purge ".

bad records, and remove units not involved with the COMMZ (primarily for run

time efficiency). For a force list of thousands of units, this can take quite

a bit of time, given the TPFDD's size and sometimes sizeable error rate.

D-10

e. Engineer Unit Capability. Engineer units in SEAC provide the

manpower resources to perform tasks. The source of information on what a

unit's capability is comes from the engineer capability file used by the .1

CESPG. This file should be reviewed, however, since units change and

differences exist between TDAs and TOEs. This file will usually be augmented

by information about indigenous contractors and other national military

engineer units.

f. Planning factors. Facility requirements are primarily generated

by factors. Units, people, equipment, and installations can all demand

facilities. Most people and equipment factors come from current Joint Chiefs

of Staff (JCS) guidance.2 Unit related factors can be found on the CESPG

MASTER file. Installation factors are a unique feature of SEAC. The CESPG

has factors for airbases, but does not identify other installation types to

permit special treatment (the base complex limitation). Installation factors

allow the user to define minimum essential facilities for each class of

r.,installations. (Another benefit is the default treatment of installations at e

day 0. The current version of SEAC assumes that required facilities,

predicated on the factors, exist at installations at the beginning of a

scenario. This was done, in particular, to create facility inventories at

non-US installations for which no asset information could be obtained.) Since

factors change with theater and scenario, it is incumbent upon the user to

review the factors and assure their appropriateness.

Ig. Facility Components. Requirements are expressed in terms of

amount of facilities needed. That might be kilowatts for generator needs,

square footage for operational facilities, or gallons for water production.

CL Requirements are translated into engineer work by finding a facility component

which best satisfies these needs. The component data provides the skill

effort needed to construct or repair a given sized facility, expressed in

terms of daily hours of needed horizontal, vertical, and other work hours.

The information comes from the facility component systems of each US service.
3

This is the same data (found on the CATCODE file) that is used by the CESPG.

2planning Factors For Military Construction in Contingency Operations,
Enclosure to Joint Chiefs of Staff Memorandum, MJCS-201-81 (13 October 1981).

3Army Facilities Components System User Guide, Technical Manual 5-304
(Headquarters, Department of the Army, October 1979).

SD-1

6.A~~ -~~V- ~VV~~-~V' ~~V%~. ~ ,% ~V

The only difference is that ESC does not include multiple components within a

category code/project class. In the initial version of SEAC, three components

were selected for temporary construction, initial construction, and damage

repair. The latter is construed to mean repair of temporary standard

facilities. ESC culled most of these data from the CESPG component file. In

some cases changes were made to suspect entries. Some features of SEAC

required making pseudo components (for MSR tunnel and bridge entries). The

components chosen influence the workload to different degrees. Such things as

satisfying electric power requirements with a few large, rather than many *

small generators can substantially change engineer requirements. The user .

should inspect the CATCODE file to assure that component data is correct for

the theater location (i.e., frigid, temperate, or desert) and that the

facilities correspond to the concept of operations.

h. Pre-existing assets. For those theaters where US units are

forward deployed (Europe and Northeast Asia), the sizeable inventory of

existing US installations and facility assets must be accounted for before new

requirements can be estimated. The service maintained, real property

inventories (RPI) should make this an easy task, but experience has shown

those files to be rather turbulent. A user should closely examine those RPI -

files or the CESPG asset files to ensure the data is representable. (NB:

Recycling facilities such as schools into administrative buildings or billets

is not done automatically by SEAC. ESC developed a program that converts A

assets from peacetime to possible wartime use by translating Army Facility

Component System (AFCS) codes into JCS CATCODE equivalents.)

(1) Task prioritization. Engineer work is not all equally e.

important. Some facilities are more important than others, and to assure that .

effort is applied to these facilities, SEAC prioritizes projects. The

relative importance (see the discussion of task prioritization in the mainrelative'

paper) of work for each country in the analysis can be included. Construction

priorities are presently derived from the type of installation at which the ..

facility is being built; damage repair priorities are based on the class of

facility being repaired. Restoration and maintenance, if added work, would .'

similacly be based on installation and facility classes. It is generally the "

sponsor of the study that sets the priorities. (NB: The priorities file can -

also be used to not only rank, but also preempt certain tasks. First, if a

D-12

%p

type of work, e.g., repairing railroads, is not in a country's priority list,

the implication is that work is not done. Second, the file also contains an

estimate on the amount of effort that the host nation is expected to provide.

Thus, if there is an entry for repairing railroads, but the percent

responsibility was set at 10 percent, the result is that the host nation would

do 90% of the work. (Needless to say, tying construction priority to an

installation means that a wide range of facilities all receive the same

priority. ESC anticipatP that one of the first changes to SAC ;ill bc to

link construction policy to facility class as is done for war damage repair.)

5. Modifying SEAC. SEAC provides a software framework to analyze

engineer workload. The earlier description of SEAC's philosophy emphasized

the intended mutability of the model. Rather than contorting a problem into a

form that SEAC requires, the programmer/analyst can (is expected to) change or

extend the model. This is, to a large degree, a result of the environment in

which SEAC was created. The features of the implementation language, SIKULA, p
were, in fact, specifically intended to support the development of

problem-oriented concepts. To be able to make these changes or additions,

however, requires the user to understand SIMULA first and SEAC second. There

is little guidance that can be offered to someone considering such changes

since there is no shortcut to understanding the software.

'

* LAST PAGE OF ANNEX D

D-13

F-L

Op

I

ANNEX E

SEAG REPORTS AND MESSAGES

5- .

)i ,*

• %" ,S

f'

..
'.f

1 " f's-, W , %, % .% % %%..%.%. %%

I

ANNEX E

SEAC REPORTS AND MESSAGES

Paragraph Page

I Purpose E-1

2 Scope E-1

3 SEAC Reports E-2

Figiure

E-1 CATCODE/Component Error Messages E-3
E-2 Reception, Staging, and Deployment Errors E-4
E-3 ORDERS File Error Messages E-4
E-4 Threat Team and Plane Weapon/Ordnance Messages E-5

E-5 Air War Messages E-6
E-6 Threat Mission Summary Report E-6
E-7 SEAC Daily Cycle Change Messages E-8
E-8 Errors Identified During GEOLOC File Processing E-8
E-9 Contents of the SEAC Monitor File E-9
E-10 Engineer Capability Data E-10
E-11 SEAC Planning Factors E-11
E-12 Category Code/Component Listing E-12
E-13 Unit of Measure Data Listing E-13

E-14 Installation GEOLOC and Type Assignments E-14
E-15 Mapcell-Installation Cross-Reference E-15
E-16 Report of Installation/Facility War Damage Events E-16
E-17 Engineer Resource Tasking Results E-18
E-18 Installation Status Report E-19
E-19 Theaterwide Engineer Unit Status Report E-20
E-20 Capability Report for Regional Summary E-21
E-21 Work Submission Report for Regional Summary E-22
E-22 Requirements Report for Regional Summary E-22
E-23 Utilization Report for Regional Summary E-23 S

1. Purpose. This annex presents examples of the various messages,

runtime information, and reports currently provided by SEAC.

2. Scope. The SEAC model is relatively self-contained, i.e., it does

not rely on other programs for pre- and post-processing tasks. The user

prepares the data files according to required formats, and then lets the model

take over. It reads the input files, checks syntax, flags questionable or or

erroneous data, constructs efficient look-up tables, reports on key actions S

E- 1

IVA."%

and milestones during the simulation of activities and, upon completion,

constructs report files summarizing the results. This annex will touch upon

the output that accompanies each of these phases.

3. SEAC Reports. One of SEAC's design objectives was to simulate

engineer requirements and capabilities in as much detail as data and

computational limits permitted. SEAC takes maximum advantage of the

capabilities afforded by the modeling language's dynamic memory allocation and

the operating system's virtual memory management. Consequently, there is a

considerable amount of information, both interim and permanent. To save the -

state of the model every simulated day, or worse yet, at every major change in .

status, would quickly overwhelm core, virtual, and auxiliary memory. To

wisely use computer time and memory, became as important a design need as the

functional modeling. SEAC adopted a rather flexible approach to reporting

needs. Output falls into several categories: automatic (such as error

messages and certain summary reports at normal termination), optional

(printing input data records or showing details of internal processes), and

definable (indicating the level or area for which summary reports are needed).

a. Messages. SEAC messages cover a variety of purposes: errors,
warnings, interim results, and status. Most messages, though terse, give a

sufficient indication of the condition or fault that has been encountered and

are listed below but are not individually discussed.

(1) CATCODE processing. CATCODEs are the means by which

facilities are identified within SEAC. Managing facility data occupies the

bulk of SEAC's time. Assets, planning factors, component data, damage, tasks,

and projects all make use of CATCODE identifications to manage facilities.

Needless to say, the opportunities to introduce erroneous data are manifest.

The model checks CATCODEs whenever they enter SEAC's environment. Bad

CATCODEs and CATCODEs with invalid or inconsistent units of measure are ,-. .4

rejected and reported. (Valid CATCODEs, incorrectly used, are the

responsibility of the user.) The messages shown in Figure E-1 are examples of

such errors, and also indicate that SEAC tries to identify the internal

procedures or processes where the error surfaced: "NEEDS" indicates a e

mismatch that occurred during planning factor application; "ASSETS" indicates

that the error occurred while processing the facility asset file during the - '

setup phase of the simulation.

E-2
E 12.3. ,%

.3

.

CATCODE/COMPONENT ERROR MESSAGES
%

.... PROP/NEEDS..UOM MISMATCH..841C-KG

.... PROP/NEEDS..UOM MISMATCH..851A-MI

.... PROP/ASSETS..UOM MISMATCH..841B-GA

.... PROP/ASSETS..UOM MISMATCH..214A-VE

.... PROP/XREF..MISSING COMPO..832A

Figure E-1

(2) Reception, staging, and deployment (RS&D). The '0

identification and processing of individual units enables SEAC to determine

facility requirements at the installation level. Much of the routing and

movement of units is handled by logic that controls the RS&D process. The

code makes every attempt to receive and move units in a realistic manner.

Nonetheless, errors and undefined data are encountered which will prevent some S

units from being included. Rather than terminating execution, the condition

and the data record that caused it are entered into the log file as shown in

Figure E-2 for post execution review by the user.

(3) ORDER directives. The ORDERS File contains a variety of S

record types: engineer unit changes, construction or facility requirements, A

and COMMZ changes. The variety introduces an opportunity to make many

different types of errors, all of which must be checked for by SEAC. Figure

E-3 shows the various errors that are detected. S

(4) Threat definition. War damage is a direct consequence of

the demolition and ordnance materiel that is carried by infiltration teams and .V

enemy aircraft. Platforms can be configured to carry different ordnance

loads. To verify that the appropriate data was read and accepted for the 0

threat, SEAC creates the messages, shown in Figure E-4, that indicate what and

how much of each definition was successfully processed.

(5) Threat air attacks. Air attacks are grouped by strikes and

missions within that strike. When a strike begins, the status of enemy planes 0

is first established. This determines how many planes are available, how many

A-4of those are not operationally ready, and how many are currently undergoing

repair. Planes are then assigned to each mission. If there are not enough

planes in thp available p-1 to mpt mission quotas, a message indicates the 0

E-.3

av IN NO ~ - ~- ~ - -.

RECEPTION, STAGING, AND DEPLOYMENT ERRORS

..RSD.. IN PLACE UNIT DEST MISSING FOR ENTRY --

AAAAA UNIT2ZPXE 222 -99 A
..RSD.. POD NOT DEFINED AS APOD/SPOD FOR ENTRY --

AAAAA HELOBALVP 2TKDX 2 A
..RSD.. NO SERVICE RECEPTION CTR FOR ENTRY --

AAAAA HELOBALVP 2TKDX 2 A
..RSD.. POD NOT DEFINED AS APOD/SPOD FOR ENTRY --

APUSH PUSHYEVAT 100TKDX 2 A
..RSD.. NO SERVICE RECEPTION CTR FOR ENTRY -- -.

APUSH PUSHYEVAT 100TKDX 2 A
I

Figure E-2
I

N4

ORDERS FILE ERROR MESSAGES

..CHANGE ERROR.. (FROM REGION NOT FOUND)-- '4
-1 U A A 4X7ME 99 i

.CHANGE ERROR.. (UNIT NOT IN FROM-LOC)--
-1 U A A 4XME 99

.CHANGE ERROR.. (UNIT NOT IN FROM-LOC)--
00000 U A A 4X7ME 1 19

o.CANGE ERROR.. (UNIT NOT IN FROM-LOC)-- --

00000 U A A 4WXCG 1 99

.CHANGE ERROR.. (UNIT NOT IN FROM-LOC)--
00000 U A A 4WXCG 1 XXXX -P

.CHANGE ERROR.. (TO INSTAL NOT FOUND/MATCHED)--
00000 U A A 4X6AA TVRL SMYU

.CHANGE ERROR..(A^...PUT ARMY ENGR INTO REGION)--
00000 U A A 4X6AA TVRL SMYU

..CHANGE ERROR.. (UNIT NOT IN FROM-LOC)--
00000 U A A 4WXCG 1 EVAT

.CHANGE ERROR.. (MAPCELL INDEX)--
2 P A A 125A 10000 63 LF CONT PIPE 1A

Figure E-3 -.

E-4 4

'.%

"V

THREAT TEAM AND PLANE WEAPON/ORDNANCE MESSAGES '

% -

T AN22 PLSTC 60.0 ^..SPF..UNITION NOT FOUND--TM CENSORED

A IL28 B 800 450 FB250 4FB250 2FB250 2 A MUNITION NOT

Figure E-4

shortfall. A mission defines how many bombers and fighter bombers are to

proceed from the threat airbase to an installation target. An option also 'V

allows the user to designate facility class targeting if different from the

default targeting scheme. Finally, upon completion of each mission, the

number of planes that reached the target, the number of planes destroyed, and

the number of planes damaged a e given as shown in Figure E-5.

(6) Threat sumrmdries. When the air and ranger/commando threat

files have been exhausted, and all missions completed, SEAC summarizes the -

overall conduct of threat actions with short tables like those shown in Figure %

E-6. For the air threat, it gives the total number of missions processed, and NP..
a more detailed breakout, for fighter/bombers and bombers, of how many planes

were schedtled to go on the missions, how many actually went, how many were

killed or damaged before or after reaching their targets, and how many

actually completed their mission objective. The even more cryptic summary of

commando operations which is interpreted to mean that: therc were 27 planned

missions; eight teams were destroyed enroute; three attacked their target

installations; no teams were sent initially against area targets (i.e. sent to

attack any MSR or Installation facilities that it might encounter); 16 teams

initially missed their installation targets (and by convention are then placed

in the mapcell area of the target); three of those teams were later destroyed

before attacking any target; and the remaining 13 teams attacked installations

in their area cr adjacent areas to which they moved.

E-5

iii E -

:.. :*'

AIR WAR MESSAGES

NEW STRIKE BEGUN 06

POOL BASE BOMBERS FIGHTERS REPAIR (T- 0.25)

NK01 35/ 5 188/ 12 o

BOMBER SHORTAGE FOR TARGET TVRK

MISSION REPORT 1 NKO1 TO SMYU 5 0 0

MISSION REPORT 2 NKO1 TO ESXM 12 2 1

MISSION REPORT 3 NKO1 TO VHPY 13 2 0

MISSION REPORT 4 NKO1 TO WNHQ 14 0 1

MISSION REPORT 5 NKOI TO TVRK 5 0 0

Figure E-5

THREAT MISSION SUMMARY REPORT

+++ AIR WAR MISSIONS = 11

KILLED DAMAGED -

SCHED ACTUAL PRE POST PRE POST ATK N,

85 75 2 5 1 6 64 ..

66 66 3 3 3 2 57

RANGER COMMANDO SUMMARY: PLAND X-IN IIATK AASG ADFLT X-GND MSR I2ATK
27 8 3 0 16 3 0 13

%
.. %f~%

Figure E-6 ' \..%

E....

E -6.,. .' .
¢

.f. '%.

(7) Milestones. Messages are recorded in a log file at the

point in time when an event or aberrant condition occurs. It is useful to V

have some indication in the message log of the sequencing of these events to 0

place the message in relative perspective. SEAC indicates when various data

files have been read and closed, and notes each day change with an entry in ,

the log file. (As shown in Figure E-7, the entry also gives relative computer P

usage amounts, which are particular to the PRIME minicomputer, on which SEAC

was implemented.)

(8) Installation setup. Installations are defined and

structured in the GEOLOC File (see Annex C). As in other input routines,

installation data are checked for format and validity. The messages in Figure 0

E-8 give several examples of the errors that can occur. Note that when the %

message appears in the log file, it is accompanied by the record that induced n-

the error. a,

(9) Monitor file. SEAC is a stand alone model. The execution 0

of the model is directed by the input found on the various data files read
,.

during execution. While execution could be viewed from a terminal, the screen

output would quickly overwhelm a viewer. SEAC can be interrupted to view the .4

screen, but this halts execution and is a rather inefficient means of checking S

interim results. It is still useful, however, to be able to check that SEAC

is making reasonable progress, thus the reason for the Monitor file shown in .,

Figure E-9. As identifiable milestones are achieved, SEAC records the event

in Monitor, along with the cpu time consumed and the simulated time of the

action.

(10) ECHO. Sometimes it is necessary to put a computer program

"under a microscope." This most often occurs during verification or

debugging. For a data-driven program such as SEAC, it is useful to examine 0

program execution relative to the input stream. To allow this, there is a

control variable that can be toggled to print both the input record and an

%J* indicator of the process or procedure thot identified the condition. %%

b. Data tables. For the most part, SEAC does not place any,-

particular order requirements on the data that are placed in the input files.

The model structures the data for efficient internal access. A user can .0

direct SEAC to print out the data tables in the structured order that they are

N F 7

SEAC DAILY CYCLE CHANGE MESSAGES

<<<<<<... NEW DAILY CYCLE AT MODEL TIME 0.00 >>>.
.<<<<DT= 44.70 >>>..<<<TOT= 174.12 >>>>>>

<<<<<<... NEW DAILY CYCLE AT MODEL TIME 1.00 >>>.
S<<<<DT= 38.41 >>..<<<<TOT= 212.53 >>>>>>

..... SEAC TERMINATES AT TIME = 3.00.
DT= 25.92 .. TOT= 269.22

Figure E-7

ERRORS IDENTIFIED DURING GEOLOC FILE PROCESSING

BUILDMAP ERROR...<< BAD COUNTRY SERVICE >>
BUILDMAP ERROR... << WRONG CARDTYPE >>
BUILDMAP ERROR...<< INSTALLATION AMBIGUITY >>
BUILDMAP ERROR...<< COLLOCATION FAILED >> -
BUILDMAP ERROR...<< COLLOCATED BASE DOESN'T EXIST >>

BUILDMAP ERROR... << COMPLEXING >> a:.

BUILDMAP ERROR... << MISSING MAPCELL >>

Figure E-8

E-8

--

'VP.

CONTENTS OF THE SEAC MONITOR FILE

Model Model Action Being Timed Elapsed Delta _
Time CPU Time Time

0.000 SEAC INITIATED 6.23 0.00
0.000 UOM BUILT 7.75 1.52
0.000 FACTOR BUILT 9.34 1.59
0.000 CATCODE BUILT 26.74 17.40
0.000 ECAPB BUILT 33.66 6.92
0.000 GEOLOC BUILT 76.40 42.74
0.000 DATA INPUT COMPLETED 129.42 53.02
0.000 TIME IN SEAC 174.12 44.70
1.000 TIME IN SEAC 212.53 38.41
2.000 TIME IN SEAC 243.30 30.77
3.000 MODEL FINISHED 269.22 25.92
3.000 REPORTS COMPLETED 315.72 46.50

Figure E-9 S

maintained within the model. (Note that the examples presented below are in

most cases extracts. Many of the actual tables are considerably larger.)

(1) Engineer unit capability. The table shown in Figure E-10 S

shows engineer capability data as defined by the ECAPB File (see annex C). %

(2) Planning factors. The table in Figure E-11 shows the

planning factors defined for an assessment. It is a very useful summary,

considering the different permissible forms of factors.

(3) CATCODEs and Components. CATCODEs within the model are

indexed by CATCODE, service, country, and component type. The input files,

however, most likely group CATCODEs by nation and by service. Figure E-12,%

shows the compact CATCODE-component breakdown that parallels the internal S

version used by SEAC. The right most column indicates which of the three

permissible components are defined for the analysis. The presence or

absence of components has particular implications. For example, the absence

of an initial standard component is interpreted to mean that there is to be no

new construction of facilities of the given CATCODE.

(4) Units of measure. As described in Annex C, the unit of

measure (UOM) data compiled for SEAC, and shown in Figure E-13, serve several

purposes. First, it establishes what are the valid measurement units for an 0

E- 9

0

0%

ENGINEER CAPABILITY DATA

UTC MEN NAT SVC HORZ VERT GENERAL

48AAA 22 1 1 102.00 17.00 25.00 *a ,
48AAQ 222 1 1 339.00 534.00 212.00 A .

49GGL 22 1 1 102.00 17.00 25.00
49GH2 67 1 1 97.00 67.00 0.00
49GH3 17 1 1 97.00 67.00 0.00 :-
49GH4 67 1 1 97.00 67.00 0.00
49GH5 32 1 1 97.00 67.00 0.00
49GH6 95 1 1 142.00 262.00 60.00
49GHD 20 1 1 0.00 150.00 0.00
49GHE 32 1 1 45.00 120.00 15.00
49GHF 55 1 1 52.00 240.00 15.00
4AAAD 181 1 1 136.00 704.00 255.00 \

Figure E-10 ,

;N

Ep

E-10

E-1I6

%

SEAC PLANNING FACTORS

FACTOR NAT SVC CATCODE UNIT UNIT OF

_ __ AMOUNT MEASURE

ADA
131E 200.00 SF
141L 500.00 SF
721A 400.00 SF O
811A 200.00 KW~~BASE 1 1'.- ,.
131A 1600.00 SF

BASE 1 2

116A 803.00 SY
116B 1600.00 SY
116C 14900.00 SY
121B 4.00 OL
131A 8100.00 SF :

133A 1600.00 SF
141B 960.00 SF ,.

141H 2400.00 SF
1411 2750.00 SF

Figure E-11

E-11

1 V,

%

CATCODE FACILITY DESCRIPTION NAT SVC AVAILABLE COMPONENTS

.

111A HARD&AFLD PAVE 31N 1 1 TEMPORARY WAR-DAMAGE

1 2 INITIAL TEMPORARY WAR- DAMAGE
111B HARD&AFLD PAVE 31N 1 1 TEMPORARY WAR-DAMAGE
IIIC HELO LANDING PAD 1 1 INITIAL TEMPORARY WAR-DAMAGE
112A HELOPAD.TW, PARK AP 1 3 INITIAL .

C E TEMPORARY WARLTGDAMAG E .
1 2 INITIAL TEMPORARY WAR-DAMAGE

113A HELOPAD, TW, PARK, AP 1 3 INITIAL ",
1 1 INITIAL TEMPORARY WAR-DAMAGE

l 2 INITIAL TEMPORARY WAR-DAMAGE
116A WASH APRON 1 INITIAL P

1 2 INITIAL TEMPORARY WAR-DAMAGE

116B COMP CAL PAD I I INITIAL TEMPORARY .
1 2 INITIAL TEMPORARY WAR-DAMAGE

116C ARM/DISARM PAD I I INITIAL V

1 2 INITIAL TEMPORARY WAR-DAMAGE
116D AFLDPVMT EXPN AM2 1 2 INITIAL TEMPORARY WAR-DAMAGE

Figure E-12T T R W A
C1

2IR116C RM/DSARMPAD 1"IITIA

UNIT OF MEASURE DATA LISTING

Unit of Unit of Conversion Damage
Measure Measure Factor Criteria

(eguiv) z

BD SF 500.000 MAEB
BL SF 1.000 EMDA to
CF SF 0.125 EMDA '*

CY SF 9.000 EMDA
EA SF 500.000 EMDA
FA SF 2000.000 MAEB
FB SF 100.000 EMDA
GA SF 1.000 EMDA
GM SF 1.000 MAEB
KG SF 1.000 MAEB
KV SF 1.000 MAEF
KW SF 2.000 MAEF
LF 1.000 EMDL
LN LF 1.000 EMDL
MB SF 1.000 MAEF
MI LF 5280.000 EMDL
OL SF 100.000 EMDA
OU SF 500.000 EMDA

Figure E-13

execution of the model. It also associates each UOM with data needed to

calculate facility damage.

(5) GEOLOC installations. The definition of theater

installations and their function is found in the GEOLOC file. Internal to

SEAC is a structure that orders this information by GEOLOC (the input file

does not require and in some cases prohibits a strict alphabetical array).

The information, such as found in Figure E-14, provides the user a convenient

alphabetical listing of installations, installation complexes, and their

types.

(6) MAPCELL-GEOLOC mapping. In addition to installation

specific data, the GEOLOC File is also the means by which the mapcell-GEOLOC

linkage is defined (see Annex D). Since the file will not be sorted in

mapcell index order, another convenient listing to assure that data

E-13

. .' .

INSTALLATION GEOLOC AND TYPE ASSIGNMENTS

GEOLOC INSTALLATION AND TYPE

AACC SUBCOMPLEX OF GEOLOC EVAT
ALEM ANSONG IS A 0TH
ALVH SUBCOMPLEX OF GEOLOC ALVTP
ALVP ANYANG RS&D IS A CAMP
C14YG BROOKLYN IS A ELEC
CRC3 CRC SITE (KNGNG) IS A ELEC
CVBV PUSAN K-9 IS A AFLD

PUSAN K-9 IS A AFLD '

DJBW CHANGSAN IS A ELEC
DJDJ SURGOMPLEX OF GEOLOC DJBW
DMAK CHECHON R-605 IS A AFLD

DMEZ CHEJU-DO TRAINING IS A 0TH
DR13D CHINHAE R-813 IS A AFLD
DRUF CHINHAE IS A PORT
DRUG SUBCOMPLEX OF GEOLOG DRUF
DRUL SUBGOMPLEX OF GEOLOG DRUF
DSFG CHOEJONG SAN SAT TRK IS A ELEC
DSLG CHONGJU K-59 IS A AFLD

CHONGJU K-59 IS A AFLD
DSLJ CHONGJU (IC) IS A 0TH

Figure E-14

E-14

l*l~.*S'l -vVp~

MAPCELL-INSTALLATION CROSS-REFERENCE

MAPCELL GEOLOCS CONTAINED 0

I DMEZ
2

3 QNPW '0
4
5
6 EPW5

7
8 ZQAA
9
10
11 MMFY
12 KAZX
13
18
19
20
210
22 HK14 HC07
23 MLWR MLWY NJVE WPVK
24
25 UPUD UPUB
30 USLG EPWI

Figure E-15 %

assignments have been correctly made is shown in Figure E-15. The listing

indicates which GEOLOCs have been assigned to specific mapcells.

c. Process details. In the paragraph describing SEAC's ECHO

option, the need to look closely at how the program is operating was

discussed. Two of the most important activities within SEAC are the

generation of damage, and the allocation of direct and general engineer

support to tasks. To assure that these processes were correctly working,

logic was included within the model to report the details of these processes.

This ability, however, has since proved useful to investigate why particular

results occurred. , 1

(1) Threat attacks. The direct calculation of war damage is

one of the major innovations in SEAC. Messages are entered in the log file to

E-15

111110

-- 11 JiI

%

'.

indicate when missions were scheduled and what happened to the threat elements

on those missions. To see what the results, i.e., damage were, a user can ask

SEAC to report on each attack. The threat element, the installation-facility f

target, and the amount of damage, if any, are provided. Figure E-16 gives

REPORT OF INSTALLATION/FACILITY WAR DAMAGE EVENTS

..IL28 2 C HUMPHREYS-
219A.FAC/DMG. .BLAST. MAEB

DIST: 33.51, RAD: 31.62
DIST: 36.07, RAD: 31.62 .
DIST: 42.68, RAD: 31.62
DIST: 29.95, RAD: 31.62 381.1

131D.FAC/DMG. .BLAST. MAEB

DIST: 42.64, RAD: 23.40
DIST: 25.15, RAD: 23.40 122.3

&HIT& DAMAGE OF 131D 122.3 AT TIME 0.25

-=.MIGl7 2 C HUMPHREYS
131A.FAC/DMG. .BLAST. MAEB

DIST: 14.82, RAD: 55.97
DIST: 14.82, RAD: 55.97 628.3

&HIT& DAMAGE OF 131A 628.3 AT TIME 0.25

..=.....IL28 I SEOUL K-16-
IliA .SUR/DAM. &HIT& DAMAGE OF 1lA 0.0 AT TIME 0.25

CRTR CRTR CRTR

.._==...MIGl7 5 PYONGTAEK A-511/K-6-
811A .UTL/DMG. .BAST. MAEF

DIST: 15.56, RAD: 28.28
DIST: 39.39, RAD: 28.28 314.16

&HIT& DAMAGE OF 811A 314.2 AT TIME 0.25

Figure E-16 A

several examples. The first shows the results of an IL-28, Beagle attack

against facilities at Camp Humphrey. Since CATCODE 219A is a building

(maintenance shop), the evaluation criteria will be the mean area of

effectiveness for blast damage (MEAB). "DIST" indicates the distance a bomb

falls from the center of a target with radius RAD. The final value shows the

total damage, in square feet, to that facility caused by this attack. The

E-16 X

attack against K-16, an airbase, shows that a different procedure is followed

when attacking surface targets, i.e. runways, taxiways, etc. For them, damagew is measured in craters. Note also that in the final record, the attack S

against a utility target (an electric power source) results in using the mean

area of effectiveness for fragmentation damage.

(2) Engineer resource allocation. SEAC goes to great lengths

to emulate engineer support. Engineer units assigned to installations or

regions, are analogous to units acting in direct and general support roles.

During development of the model, a readout of how capability was being

allocated was included to assure correct operation. The messages produced,

however, have continued to be useful, especially when a user needs to look 0

closely at why utilization may be low, or that a project might remain in a job

queue too long. The messages in Figure E-17 were extracted from one day's

results during a test run. The first record shows the result of performing a

task that is taken from a job queue at Kunsan. The far right column indicates

what engineer capability is found at the installation (or region). The

absence of an entry indicates there is no capability at Kunsan; a request then

goes to the region (in this case identified as region 72) that provides

general support to Kunsan. That region also has no capability, so the request

passes on to the next higher region. The engineer capability found in region

7 is more than enough to satisfy the task's needs. The next task also occurs

at Kunsan, and follows a similar path to obtaining engineer capability. Note,

however, that the engineer pool assets in region 7 have been reduced by the 0

amount of effort used to fulfill the previous task. Another example worth

noting is the task arising at Pyongtaek, where there happens to be some %

engineer capability. It is sufficient to complete the horizontal and vertical

portions of the task, but not the general. Note the remaining task S

requirements that are requested from region 63. Although there were no

general hours in Pyongtaek's engineer pool, the model substituted the

remaining horizontal and vertical hours as general labor (SEAC has a table for

permissible skill substitutions). The region has sufficient general labor in 0

its pool to complete that portion of the task beyond the installation's

engineer capability. Note that the next task, at Osan, also requests support

from the region, whose available general hours have been reduced by the 178.67

hours applied to the Pyongtaek task. 0

E-17 f

-~~~~~~~~~~~~~~~ M '*''~ ~ *,' ~~%'P,. ~ ~ ~ N%~ N.

L~a ! _ V y,-; 'r,,_" 1rJ r., W,' VVV V".1 VV1'%r:V

ENGINEER RESOURCE TASKING RESULTS

Task Requirement Engr Pool Assets
Installation/region Horz Vert Genl Horz Vert Genl ",I

KUNSAN USAFB K-8 3.35 5.24 2.31 .

CANDO REGION 72 3.35 5.24 2.31
CANDO REGION 7 3.35 5.24 2.31 1134.00 1809.90 548.10

KUNSAN USAFB K-8 64.00 2.00 60.00
CANDO REGION 72 64.00 2.00 60.00
CANDO REGION 7 64.00 2.00 60.00 1066.64 1802.66 485.79 .

C HUMPHREYS 0.64 23.89 24.64
CANDO REGION 63 0.64 23.89 24.64 1101.70 1781.04 519.21

PYONGTAEK A-511/K 10.47 96.34 236.67 12.65 151.99 0.00
CANDO REGION 63 0.00 0.00 178.67 1101.06 1757.15 494.58

OSAN K-55 64.00 2.00 60.00
CANDO REGION 63 64.00 2.00 60.00 1101.06 1757.15 315.91

OSAN K-55 64.00 2.00 60.00
CANDO REGION 63 64,00 2.00 60.00 1037.06 1755.15 255.91

Figure E-17

d. Status. SEAC represents installations, facilities, and engineer

units in great detail. Reports on the status of units and installations are

useful to analysts who want to see what is happening within SEAC. e.

(1) Installation. Most engineer work occurs at installations.

This is because most facilities are located at installations, and engineer

work either constructs or repairs facilities. A status report for each

installation is routinely produced at the termination of the simulation. The

report, an example of which is Figure E-18, gives general information such as

the name of the installation, its country and service affiliations, and its
'

c'rrent population. It also shows facility status, engineer units assigned to

the installations, and the contents of the job queue at the end of the

simulation. This report could be produced at any time, and could be useful to

a user monitoring requirements and activities at a few installations.

E1

E-18 .

SI "

INSTALLATION STATUS REPORT

TVRK PYONGTAEK A- 1/REPORTSTATUS
POPULATION: 0, SORTIES: 5, SPF ATTACKS: 0

INSTALLATION ASSETS ____ ______ ______UNERWA

131A 1600.0 1600.0 0.0
442A 0.0 2710.0 0.0
721A 0.0 59792.0 0.0
722A 0.0 15452.0 0.0
730A 0.0 590.0 0.0
811A 0.0 1600.0 0.0
812A 0.0 46870.0 0.0
842A 0.0 15450.0 0.0
851A 0.0 0.0 0.0

Horz Vert Gen Eff UTC

ENGR UNITS 2
120.0 742.0 0.0 0.360 4X6AA

51.7 319.8 0.0 0.360 4X6AA

Time Prog/Dur Size Pri Catcode Ixpe Reqt

0.5 3.0/11.0 57.34 1 131A W 1600.00
0.5 3.0/ 5.0 343.48 2 811A W Aoo.00

Figure E-18

(2) Engineer units. Another useful report shows the

distribution and capability of engineer units across the entire theater.

Engineer units are individually identified by their unit type code (UTC) and

location -- installation or region. The report also aggregates total unit

capability within the location where engineers are assigned. Figure E-19

gives an example. It .hows there are units in subregion 63 and at an

installation within the subregion. The subregion entry lists and summarizes

the units specifically assigned to it but would not include those units

assigned to the installation. This contrasts to capability reports that will ..=

be described later in this section. In those reports, the regional capability

subsumes all engineer capability assigned to the region, its subregions, and

the installations they contain.

e. Regional reports. The messages, tables, and displays described

up to this point have all reflected input or processing information. The

E-19

°6

. i,,,, unum nma unulm nll llMII I*n IB N I! n n -. " (

THEATERWIDE ENGINEER UNIT STATUS REPORT

Region GEOLOC Horz Vert Gen Rel UTC
(subregion) hrs hrs hrs eff. _

1 5 1260.0 2011.0 609.0 0.900 4X7ME ,,

1134.0 1809.9 548.1
51 AREA TKDX 405.0 555.0 30.0 0.360 4XIAB

145.8 199.8 10.8
6 1260.0 2011.0 609.0 0.900 4X7ME

1134.0 1809.9 548.1
62 1260.0 2011.0 609.0 0.900 4X7ME

1260.0 2011.0 609.0 0.900 4X7ME -"

2268.0 3619.8 1096.2
63 1260.0 2011.0 609.0 0.900 4X7ME

51.7 319.8 0.0 0.360 4X6AA

1152.6 1925.0 548.1 '.

AREA ALEM 136.0 704.0 255.0 0.270 4WXCG
223.2 1155.2 418.4 0.270 4WXCG -

223.2 1155.2 418.4 0.270 4WXCG
223.2 1155.2 418.4 0.270 4WXCG

217.5 1125.8 407.8
TVRK 120.0 742.0 0.0 0.360 4X6AA ,%

51.7 319.8 0.0 0.360 4X6AA
61.8 382.2 0.0

7 1260.0 2011.0 609.0 0.900 4X7ME .

1134.0 1809.9 548.1 %_

Figure E-19

regional reports give results which summarize the evaluation of planned

engineer support to meet projected workload. To conserve computer time and

space, SEAC does not automatically produce reports for all possible areas.

Instead, the user designates those regions (see Annex D for discussion of ,'-

SEAC's regionalization of the theater) for which daily capability, workload,

and backlog data are desired. A regional report subsumes the data found in

all subregions, mapcells, and installations within the region. Reports also

provide other special detailz such as s6LvLu, priority, skill, and type of ." 5,

work.

(1) Capability. The daily capability report, shown in Figure

E-20, presents two breakouts: the first shows the daily available engineer

hours by skill; the second shows those same hours according to service %,.

affiliation ("C" contractor; "A" := Army; etc.). S

E-20

.. ~ ,J%

CAPABILITY REPORT FOR REGIONAL SUMMARY

DAY HORZ VERT OTHER TOTAL A F M C N

0 11088.4 8663.1 19628.6 39380.1 31276.0 8104.2 0.0 0.0 0.0

1 11722.0 8663.1 19628.6 40013.7 31909.6 8104.2 0.0 0.0 0.0

2 12660.4 9366.3 21189.6 43216.3 35112.1 8104.2 0.0 0.0 0.0
3 13810.0 10069.5 22750.6 46630.0 38525.9 8104.2 0.0 0.0 0.0

4 14263.6 10303.9 23270.9 47838.4 39734.2 8104.2 0.0 0.0 0.0

5 14748.4 10772.7 24311.5 49832.6 41728.4 8104.2 0.0 0.0 0.0

Figure E-20

(2) Workload by service. SEAC presently models two types of 0

engineer work: new construction and damage repair. Facility maintenance was

not modeled in the initial version of SEAC because of the absence of credible ,

tot wartime maintenance data. If this data were available, it would be relatively

easy to add maintenance to SEAC with its detailed representation of facilities 0

and installations, and the treatment of engineer work as tasks. The workload

report, shown in Figure E-21, summarizes when and how much engineer work

occurs with each new engineer task that is created. Multiple day projects are

distributed over time, rather than indicating their total time occurred on the S

day the task was created.

(3) Requirements. The requirements report, shown in Figure E-

22, actually shows the daily accumulated result of prior days' application of

capability to workload. Requirements could just as easily be called 9

cumulative backlog. Each day the task queues found within the boundary of the .$,

region are examined and daily hour requirements aggregated in various ways.

It does not matter whether the task was placed in the queue that day, or has

been sitting in the queue for weeks because of inadequate engineer capability.

(4) Utilization. To assist force designers in assuring that

resources are effectively used, SEAC can show the percentage of daily

capability that is actually assigned to tasks. Utilization is affected by,

among others, location, service, and skill needs. Low utilization may 0

indicate that engineer assets might be better used elsewhere; it might,

however, mean that there is a need for horizontal skills, rather than the

vertical skills of the units currently available. Utilization reports, such

E-21

6f

WORK SUBMISSION REPORT FOR REGIONAL SUM4ARY

DAY .-------- A ------------------- F ----------------- M --------------. --- C ---------.------- N ---------
NEW CNSTR WAR DMG NEW CNSTR WAR DMG NEW CNSTR WAR DMG NEW CNSTR WAR DMG NEW CNSTR WAR DMG "

0 733.4 684.0 696.0 11804.7 0.0 0.0 0.0 0.0 0.0 0.0 • -

1 1104.0 1108.6 1215.6 9914.6 0.0 0.0 0.0 0.0 0.0 0.0

2 10843.5 1363.4 0.0 5645.5 0.0 0.0 0.0 0.0 0.0 0.0

3 3938.4 1353.6 0.0 3343.3 0.0 0.0 0.0 0.0 0.0 0.0 ',.

4 3723.4 1078.8 0.0 2290.7 0.0 0.0 0.0 0.0 0.0 0.0

5 3078.4 869.8 0.0 1419.4 0.0 0.0 0.0 0.0 0.0 0.0

Figure E-21

REQUIREMENTS REPORT FOR REGIONAL SUMMARY

DAY VITAL CRITICAL ESSENTIAL NECESSARY

HORZ VERT OTHER HORZ VERT OTHER HORZ VERT OTHER HORZ VERT OTHE,

0 771.2 723.0 259.5 2601.0 1420.6 1249.0 4082.6 2413.6 397.6 0.0 0.0 0.. -

1 965.3 1029.1 591.6 1991.9 2332.8 1267.6 4530.0 3600.1 753.9 0.0 0.0 0.0

2 649.3 1113.9 442.9 2126.3 2680.4 1318.1 3580.9 9069.4 4565.8 0.0 0.0 0.Q ,

3 283.7 952.5 303.0 1635.9 2131.7 977.6 3188.7 7890.3 3941.4 0.0 0.0

4 67.1 458.9 118.1 1438.9 1716.2 723.1 3184.8 7774.3 3903.7 0.0 0.0 0.0"

5 6.7 429.6 81.2 1145.6 1459.4 363.1 3164.0 7732.5 3894.0 0.0 0.0 0.0

Figure E-22

E-2 25

.

E- 22 ,

9 %* ~ - . S * ~ *~-~5-~ ~'*,. 5'**

A

as illustrated in Figure E-23, are useful to surface possible maldistri-

butions. There may, however, be reasons for the result ranging from doctrine

or support plans, to a need for changes in the model or input files

(especially in project input directed by the ORDERS file).

UTILIZATION REPORT FOR REGIONAL SUMMARY

DAY V I T A L C R I T I C A L E S S E N T I A L N E C E S S A R Y TOT
HORZ VERT OTHER HORZ VERT OTHER HORZ VERT OTHER HORZ VERT OTHER %

0 687 557 186 2262 1009 1085 2060 1037 163 0 0 0 23.0

1 618 673 347 272 752 362 1720 865 174 0 0 0 14.5
2 522 819 323 498 1185 507 492 2126 1004 0 0 0 17.3

3 220 687 222 201 905 388 125 1970 1601 0 0 0 13.6

4 63 222 73 299 671 446 144 1939 1609 0 0 0 11.4

5 3 193 36 358 499 210 144 1905 1600 0 0 0 9.9

Figure E-23

(5) In practice. ESC quickly found that these numeric reports,

although essential for in-depth analysis, were simply too detailed to use in

presenting results to decision makers. Instead, ESC ported the data to graphic

terminals that were easily able to plot the data and produce hard copy of those

graphs. Another case of a picture being worth a thousand numbers! 4

=%

. o'.

0

LAST PAGE OF ANNEX E

E-23 '.

NS

